已知拋物線C:x2=2py過點(diǎn)P(1,
1
2
)
,直線l交C于A,B兩點(diǎn),過點(diǎn)P且平行于y軸的直線分別與直線l和x軸相交于點(diǎn)M,N.
(1)求p的值;
(2)是否存在定點(diǎn)Q,當(dāng)直線l過點(diǎn)Q時(shí),△PAM與△PBN的面積相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)點(diǎn)的坐標(biāo)適合拋物線方程,直接求出p即可.
(2)假設(shè)存在定點(diǎn)Q,設(shè)A(x1,y1),B(x2,y2),AB的方程為y=kx+b.聯(lián)立
y=kx+b
x2=2y
,利用△>0時(shí),以及韋達(dá)定理得到x1+x2,x1x2,推出N(1,0),M(1,k+b),通過△PAM與△PBN的面積相等,得到(x1-1)2=1,解得x1=0或x1=2.所求的定點(diǎn)Q即為點(diǎn)A,說明結(jié)果即可.
解答: 解:(1)∵P(1,
1
2
)
在拋物線C上,∴1=2p•
1
2
,得p=1.  …(3分)
(2)假設(shè)存在定點(diǎn)Q,設(shè)A(x1,y1),B(x2,y2),AB的方程為y=kx+b.
聯(lián)立
y=kx+b
x2=2y
得x2-2kx-2b=0,
當(dāng)△=4k2+8b>0時(shí),有x1+x2=2k,x1x2=-2b.         …(6分)
∴(x1-1)(x2-1)=x1x2-(x1+x2)+1=-2b-2k+1(*)
由題意知,N(1,0),M(1,k+b),
因?yàn)椤鱌AM與△PBN的面積相等,所以
1
2
|PN|•|1-x2|=
1
2
|PM|•|1-x1|
,
|1-x2|=2|k+b-
1
2
|•|x1-1|
,
也即|1-x2|=|2k+2b-1|•|x1-1|…(10分)
根據(jù)(*)式,得(x1-1)2=1,解得x1=0或x1=2.此時(shí)A(0,0)或(2,2),
直線AB:y=kx或y=kx+2k-2,
所求的定點(diǎn)Q即為點(diǎn)A,
即l過Q(0,0)或Q (2,2)時(shí),滿足條件.                      …(14分)
點(diǎn)評:本題考查直線與拋物線的位置關(guān)系的應(yīng)用,韋達(dá)定理以及三角形的面積公式的應(yīng)用,考查分析問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

節(jié)日里某家前的樹上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨(dú)立,若接通電后的4秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈在4秒內(nèi)間隔閃亮,那么這兩串彩燈同時(shí)通電后它們第一次閃亮的時(shí)刻相差不超過1秒的概率是(  )
A、
5
16
B、
9
16
C、
1
4
D、
7
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班優(yōu)秀生16人,中等生24人,學(xué)困生8人,現(xiàn)采用分層抽樣的方法從這些學(xué)生中抽取6名學(xué)生做學(xué)習(xí)習(xí)慣調(diào)查,
(Ⅰ)求應(yīng)從優(yōu)秀生、中等生、學(xué)困生中分別抽取的學(xué)生人數(shù);
(Ⅱ)若從抽取的6名學(xué)生中隨機(jī)抽取2名學(xué)生做進(jìn)一步數(shù)據(jù)分析,
(1)列出所有可能的抽取結(jié)果;
(2)求抽取的2名學(xué)生均為中等生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩個(gè)地區(qū)高三年級(jí)分別有33000人,30000人,為了了解兩個(gè)地區(qū)全體高三年級(jí)學(xué)生在該地區(qū)二模考試的數(shù)學(xué)成績情況,采用分層抽樣方法從兩個(gè)地區(qū)一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了如下的頻數(shù)分布統(tǒng)計(jì)表,規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀.
甲地區(qū):
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)231015
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x31
乙地區(qū):
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1298
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(Ⅰ)計(jì)算x,y的值;
(Ⅱ)根據(jù)抽樣結(jié)果分別估計(jì)甲地區(qū)和乙地區(qū)的優(yōu)秀率;若將此優(yōu)秀率作為概率,現(xiàn)從乙地區(qū)所有學(xué)生中隨機(jī)抽取3人,求抽取出的優(yōu)秀學(xué)生人數(shù)ξ的數(shù)學(xué)期望;
(Ⅲ)根據(jù)抽樣結(jié)果,從樣本中優(yōu)秀的學(xué)生中隨機(jī)抽取3人,求抽取出的甲地區(qū)學(xué)生人數(shù)η的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,CD是⊙O的切線,C為切點(diǎn),連接AC,過點(diǎn)A作AD⊥CD于點(diǎn)D,交⊙O于點(diǎn)E.
(Ⅰ)證明:∠AOC=2∠ACD;
(Ⅱ)證明:AB•CD=AC•CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦點(diǎn)分別為F1、F2,過F1作直線交橢圓于P、Q兩點(diǎn),△F2PQ的周長為4
3

(1)若橢圓的離心率e=
3
3
,求橢圓的方程;
(2)若M為橢圓上一點(diǎn),
MF1
MF2
=1,求△MF1F2的面積最大時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x+
1-x2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,在兩種坐標(biāo)系中取相同單位的長度.已知直線l的方程為
ρcosθ-ρsinθ-1=0(ρ>0),曲線C的參數(shù)方程為
x=2cosα
y=2+2sinα
(α為參數(shù)),點(diǎn)M是曲線C上的一動(dòng)點(diǎn).
(Ⅰ)求線段OM的中點(diǎn)P的軌跡方程;
(Ⅱ)求曲線C上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=cos(x-
π
2
)
是奇函數(shù);
②若α、β是第一象限角,且α<β,則tanα<tanβ;
③將函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
3
個(gè)單位長度得到y(tǒng)=3sin2x;
④若x∈(0,
π
2
)
,則函數(shù)y=3sin(2x+
π
3
)
的值域?yàn)?span id="qaasnmd" class="MathJye">(-
3
3
2
,3]
則其中正確命題序號(hào)為
 

查看答案和解析>>

同步練習(xí)冊答案