【題目】設(shè)點(diǎn),分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為0.
(1)求橢圓的方程;
(2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn),是直線上的兩點(diǎn),且,,求四邊形面積的最大值.
【答案】(1);(2)2.
【解析】
(1)利用的最小值為0,可得,,即可求橢圓的方程;
(2)將直線的方程代入橢圓的方程中,得到關(guān)于的一元二次方程,由直線與橢圓僅有一個(gè)公共點(diǎn)知,即可得到,的關(guān)系式,利用點(diǎn)到直線的距離公式即可得到,.當(dāng)時(shí),設(shè)直線的傾斜角為,則,即可得到四邊形面積的表達(dá)式,利用基本不等式的性質(zhì),結(jié)合當(dāng)時(shí),四邊形是矩形,即可得出的最大值.
(1)設(shè),則,,
,,
由題意得,,
橢圓的方程為;
(2)將直線的方程代入橢圓的方程中,
得.
由直線與橢圓僅有一個(gè)公共點(diǎn)知,,
化簡(jiǎn)得:.
設(shè),,
當(dāng)時(shí),設(shè)直線的傾斜角為,
則,
,
,
,
∴當(dāng)時(shí),,,
.
當(dāng)時(shí),四邊形是矩形,.
所以四邊形面積的最大值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠包裝白糖的生產(chǎn)線,正常情況下生產(chǎn)出來的白糖質(zhì)量服從正態(tài)分布(單位:).
(Ⅰ)求正常情況下,任意抽取一包白糖,質(zhì)量小于的概率約為多少?
(Ⅱ)該生產(chǎn)線上的檢測(cè)員某天隨機(jī)抽取了兩包白糖,稱得其質(zhì)量均小于,檢測(cè)員根據(jù)抽檢結(jié)果,判斷出該生產(chǎn)線出現(xiàn)異常,要求立即停產(chǎn)檢修,檢測(cè)員的判斷是否合理?請(qǐng)說明理巾.
附:,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,若為拋物線上第一象限的一動(dòng)點(diǎn),過作的垂線交準(zhǔn)線于點(diǎn),交拋物線于兩點(diǎn).
(Ⅰ)求證:直線與拋物線相切;
(Ⅱ)若點(diǎn)滿足,求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動(dòng)優(yōu)化升級(jí)和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收增長(zhǎng)情況,則下列說法錯(cuò)誤的是( )
A. 2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收均逐年增加
B. 2016年我國(guó)數(shù)字出版業(yè)營(yíng)收超過2012年我國(guó)數(shù)字出版業(yè)營(yíng)收的2倍
C. 2016年我國(guó)新聞出版業(yè)營(yíng)收超過2012年我國(guó)新聞出版業(yè)營(yíng)收的1.5倍
D. 2016年我國(guó)數(shù)字出版營(yíng)收占新聞出版營(yíng)收的比例未超過三分之一
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,兩兩互相垂直,,點(diǎn),分別在側(cè)面、棱上運(yùn)動(dòng),,為線段中點(diǎn),當(dāng),運(yùn)動(dòng)時(shí),點(diǎn)的軌跡把三棱錐分成上、下兩部分的體積之比等于( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線的方程為,點(diǎn)是直線上一動(dòng)點(diǎn),過點(diǎn)作圓的切線、,切點(diǎn)為、.
(1)當(dāng)的橫坐標(biāo)為時(shí),求的大小;
(2)求四邊形面積的最小值;
(3)求證:經(jīng)過、、三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),且離心率為.
(1)設(shè)過點(diǎn)的直線與橢圓相交于、兩點(diǎn),若的中點(diǎn)恰好為點(diǎn),求該直線的方程;
(2)過右焦點(diǎn)的直線(與軸不重合)與橢圓交于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如上圖所示,在正方體中, 分別是棱的中點(diǎn), 的頂點(diǎn)在棱與棱上運(yùn)動(dòng),有以下四個(gè)命題:
A.平面 ; B.平面⊥平面;
C. 在底面上的射影圖形的面積為定值;
D. 在側(cè)面上的射影圖形是三角形.其中正確命題的序號(hào)是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com