已知函數(shù)f(x)=x5+ax3+bx-8,且f(-2)=10,那么f(2)等于( 。
A、-10B、-18
C、-26D、10
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令g(x)=x5+ax3+bx,由函數(shù)奇偶性的定義得其為奇函數(shù),根據(jù)題意和奇函數(shù)的性質(zhì)求出f(2)的值.
解答: 解:令g(x)=x5+ax3+bx,易得其為奇函數(shù),
則f(x)=g(x)-8,
所以f(-2)=g(-2)-8=10,得g(-2)=18,
因?yàn)間(x)是奇函數(shù),即g(2)=-g(-2),所以g(2)=-18,
則f(2)=g(2)-8=-18-8=-26,
故選:C.
點(diǎn)評(píng):本題考查函數(shù)奇偶性的應(yīng)用,以及整體代換求函數(shù)值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè) z=1-i,則 
2
z
+z2=( 。
A、-1-iB、-l+i
C、1-iD、l+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓臺(tái)的上下底面半徑分別是2、4,且側(cè)面面積等于兩底面面積之和,求該圓臺(tái)的母線長.(參考公式:S圓臺(tái)側(cè)面積=π(r+R)l)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間直角坐標(biāo)系中已知點(diǎn)P(0,0,
3
)和點(diǎn)C(-1,2,0),則在y上到P,C的距離相等的點(diǎn)M的坐標(biāo)是(  )
A、(0,1,0)
B、(0,
1
2
,0)
C、(0,-
1
2
,0)
D、(0,2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形OABC中,∠AOB=∠AOC=
π
2
,則
OA
BC
的值是( 。
A、
1
2
B、
2
2
C、-
1
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
4
-
y2
5
=1左支上一點(diǎn)P到右焦點(diǎn)的距離為8,則P到左準(zhǔn)線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與橢圓
x2
49
+
y2
24
=1有公共焦點(diǎn),且離心率e=
5
4
的雙曲線的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2
(1)求實(shí)數(shù)a的取值范圍,并討論函數(shù)f(x)的單調(diào)性;
(2)若對(duì)任意的x∈(x1,+∞),都有f(x)>k成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,AC=1,∠ABC=
π
3
,∠BAC=x,設(shè)f(x)=
AB
BC

(1)求f(x)的解析式;
(2)設(shè)g(x)=6mf(x)+1(m≠0),x∈(0,
3
),是否存在實(shí)數(shù)m,使函數(shù)g(x)值域?yàn)椋?,
3
2
]?若存在請(qǐng)求出m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案