3.設(shè)(2-x)6=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6,則a4等于135.

分析 以x-1代替x,可得(3-x)6=a0+a1x+a2x2+…+a6x6,求出x4的系數(shù),即可得出結(jié)論.

解答 解:(2-x)6=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6,
將x換為x-1,
∴(3-x)6=a0+a1x+a2x2+…+a6x6,
∴通項(xiàng)為Tr+1=C6r36-r(-1)rxr
令r=4,
∴a4=C6436-4(-1)4=135.
故答案為:135

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.甲、乙兩人下象棋,甲獲勝的概率是$\frac{1}{3}$,下成和棋的概率是$\frac{1}{2}$,則甲輸棋的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(1,1),($\overrightarrow{a}$+λ$\overrightarrow$)⊥$\overrightarrow$,則λ等于-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$(2,x),若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$垂直,則實(shí)數(shù)x的值是( 。
A.-4B.-2C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知csinA=-$\sqrt{3}$acosC,c=$\sqrt{3}$
(Ⅰ)求角C;
(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sinx-x,則不等式f(x+1)+f(2-2x)>0的解集是( 。
A.(-∞,$-\frac{1}{3}$)B.($-\frac{1}{3}$,+∞)C.(3,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若a2017=b(a>0,且a≠1),則( 。
A.logab=2017B.logba=2017C.log2017a=bD.log2017b=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如果函數(shù)f(x)=sin($ωx-\frac{π}{6}$)(ω>0)的最小正周期為$\frac{π}{2}$,則ω的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知 {an}是等差數(shù)列,其公差為非零常數(shù) d,前 n 項(xiàng)和為 Sn.設(shè)數(shù)列{$\frac{S_n}{n}$}的前 n 項(xiàng)和為 Tn,當(dāng)且僅當(dāng) n=6 時(shí),Tn有最大值,則$\frac{a_1}rthtfth$的取值范圍是(  )
A.(-∞,-$\frac{5}{2}$)B.(-3,+∞)C.(-3,-$\frac{5}{2}$)D.(-3,+∞)∪(-$\frac{5}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案