【題目】某市電視臺(tái)為了宣傳舉辦問答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了人,回答問題計(jì)結(jié)果如下圖表所示:

1)分別求出的值;

(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?

(3)在(2)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

【答案】(1)18,9,0.9,0.2(2)2,3,1(3)

【解析】試題分析:(1)先由第一組求出的值,再結(jié)合圖表及頻率分布直方圖就可以求出的值;(2)根據(jù)(1)中求出的各組人數(shù),按照分層抽樣的方法就可求出各組應(yīng)抽取的人數(shù);(3)先列出從人中隨機(jī)抽取人的總抽取方法,再列出所抽取的人中第二組至少有人的抽取方法數(shù),即可求出所得的概率.

試題解析:(1)由頻率表中第一組數(shù)據(jù)可知,第一組總?cè)藬?shù)為,

再結(jié)合頻率分布直方圖可知,

,

,

2)第二,三,四組中回答正確的共有人,所以利用分層抽樣在人中抽取人,每組分別抽取的人數(shù)為:

第二組: 人,

第三組: 人,

第四組: .

3)設(shè)第二組的人為,第三組的人為,第四組的人為,則從人中抽人所有可能的結(jié)果有:

個(gè)基本

事件,其中第二組至少有一人被抽中的有

個(gè)基本事件.所以第二組至少有一人獲得幸運(yùn)獎(jiǎng)的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市醫(yī)療保險(xiǎn)實(shí)行定點(diǎn)醫(yī)療制度,按照“就近就醫(yī)、方便管理” 的原則,規(guī)定參加保險(xiǎn)人員可自主選擇四家醫(yī)療保險(xiǎn)定點(diǎn)醫(yī)院和一家社區(qū)醫(yī)院作為就診的醫(yī)療機(jī)構(gòu).若甲、乙、丙、丁4名參加保險(xiǎn)人員所在地區(qū)附近有三家社區(qū)醫(yī)院,并且他們的選擇是等可能的、相互獨(dú)立的.

(1)求甲、乙兩人都選擇社區(qū)醫(yī)院的概率;

(2)求甲、乙兩人不選擇同一家社區(qū)醫(yī)院的概率;

(3)設(shè)在4名參加保險(xiǎn)人員中選擇社區(qū)醫(yī)院的人數(shù)為,求的分布列和數(shù)學(xué)期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1x+2y+1=0,l2-2x+y+2=0,它們相交于點(diǎn)A.

(1)判斷直線l1l2是否垂直?請(qǐng)給出理由.

(2)求過點(diǎn)A且與直線l33x+y+4=0平行的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=pe﹣x+x+1(p∈R). (Ⅰ)當(dāng)實(shí)數(shù)p=e時(shí),求曲線y=f(x)在點(diǎn)x=1處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)p=1時(shí),若直線y=mx+1與曲線y=f(x)沒有公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,上頂點(diǎn)為, 是斜邊長為的等腰直角三角形,若直線與橢圓交于不同兩點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)當(dāng)時(shí),求線段的長度;

)是否存在,使得?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形中,,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點(diǎn),如圖2.

(1)求證:平面;

(2)求證:平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在三棱錐, , , 的中點(diǎn).

(1)求證:

2)設(shè)平面平面, ,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)對(duì)恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1

年份x

2011

2012

2013

2014

2015

儲(chǔ)蓄存款y(千億元)

5

6

7

8

10

為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2

時(shí)間代號(hào)t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關(guān)于t的線性回歸方程;

(Ⅱ)用所求回歸方程預(yù)測到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?

(附:對(duì)于線性回歸方程,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案