精英家教網 > 高中數學 > 題目詳情

如圖所示,三棱錐的頂點為P,PA、PB、PC為三條棱,且PA、PB、PC兩兩互相垂直,又PA=2,PB=3,PC=4,求三棱錐P-ABC的體積V.

答案:
解析:

  思路解析:三棱錐的體積V=Sh,其中S為底面積,h為高,而三棱錐的任意一個面都可以作為底面,所以此題可把B看作頂點,PAC作為底面求解.

  解:V=Sh=S△PAC·PB=××2×3×4=4.

  深化升華:三棱錐又稱為四面體,它的每一個面都可當作底面來處理,這一方法叫做體積轉移法(或等積法).


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•江蘇一模)某部門要設計一種如圖所示的燈架,用來安裝球心為O,半徑為R(米)的球形燈泡.該燈架由燈托、燈桿、燈腳三個部件組成,其中圓弧形燈托
EA
EB
,
EC
ED
所在圓的圓心都是O、半徑都是R(米)、圓弧的圓心角都是θ(弧度);燈桿EF垂直于地面,桿頂E到地面的距離為h(米),且h>R;燈腳FA1,FB1,FC1,FD1是正四棱錐F-A1B1C1D1的四條側棱,正方形A1B1C1D1的外接圓半徑為R(米),四條燈腳與燈桿所在直線的夾角都為θ(弧度).已知燈桿、燈腳的造價都是每米a(元),燈托造價是每米
a
3
(元),其中R,h,a都為常數.設該燈架的總造價為y(元).
(1)求y關于θ的函數關系式;
(2)當θ取何值時,y取得最小值?

查看答案和解析>>

科目:高中數學 來源:黃岡中學 高二數學(下冊)、考試卷5 簡單幾何體同步測試卷(二) 題型:044

從2004年開始,某市政府準備在市區(qū)實施“景觀工程”,以現有平頂的民用多層住宅進行“平改坡”,計劃將平頂房屋改為尖頂,并鋪上彩色瓦片,現對某幢房屋有如下兩種改造方案:

方案一:坡頂如圖(1)所示,為頂面是等腰三角形的直三棱柱,尖頂屋脊與房屋長度等長,有兩個坡面需鋪上瓦片.

方案二:坡頂如圖(2)所示,為由(1)削去兩端相同的兩個三棱錐而得,尖頂屋脊比房屋長度要短,有四個坡面需鋪上瓦片.

若房屋長度,寬BC=2b,屋脊高為h,試問哪種方案尖頂鋪設的瓦片比較。空f明理由.

查看答案和解析>>

科目:高中數學 來源:2013年江蘇省蘇錫常鎮(zhèn)、徐州、連云港六市高考數學一模試卷(解析版) 題型:解答題

某部門要設計一種如圖所示的燈架,用來安裝球心為O,半徑為R(米)的球形燈泡.該燈架由燈托、燈桿、燈腳三個部件組成,其中圓弧形燈托,,所在圓的圓心都是O、半徑都是R(米)、圓弧的圓心角都是θ(弧度);燈桿EF垂直于地面,桿頂E到地面的距離為h(米),且h>R;燈腳FA1,FB1,FC1,FD1是正四棱錐F-A1B1C1D1的四條側棱,正方形A1B1C1D1的外接圓半徑為R(米),四條燈腳與燈桿所在直線的夾角都為θ(弧度).已知燈桿、燈腳的造價都是每米a(元),燈托造價是每米(元),其中R,h,a都為常數.設該燈架的總造價為y(元).
(1)求y關于θ的函數關系式;
(2)當θ取何值時,y取得最小值?

查看答案和解析>>

同步練習冊答案