A. | $({0,\frac{{\sqrt{2}}}{2}})$ | B. | $({\frac{{\sqrt{2}}}{2},1})$ | C. | $({0,\frac{1}{2}})$ | D. | $({\frac{1}{2},1})$ |
分析 設(shè)P(x0,y0),$\overrightarrow{{F}_{1}M}$=2$\overrightarrow{MP}$,$\overrightarrow{OM}$=$\overrightarrow{O{F}_{1}}$+$\frac{2}{3}\overrightarrow{{F}_{1}P}$,可得$\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3},\frac{2}{3}{y}_{0})$.由PO⊥F2M.可得$\overrightarrow{OP}•\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3}){x}_{0}$+$\frac{2}{3}{y}_{0}^{2}$=0,又${y}_{0}^{2}$=$\frac{^{2}}{{a}^{2}}({a}^{2}-{x}_{0}^{2})$,化為:${c}^{2}{x}_{0}^{2}$-2a2cx0+a2(a2-c2)=0,解出,根據(jù)-a<x0<a,即可得出.
解答 解:設(shè)P(x0,y0),$\overrightarrow{{F}_{1}M}$=2$\overrightarrow{MP}$,
∴$\overrightarrow{OM}$=$\overrightarrow{O{F}_{1}}$+$\frac{2}{3}\overrightarrow{{F}_{1}P}$=$(\frac{2{x}_{0}}{3}-\frac{1}{3}c,\frac{2}{3}{y}_{0})$,
$\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3},\frac{2}{3}{y}_{0})$.
∵PO⊥F2M.
∴$\overrightarrow{OP}•\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3}){x}_{0}$+$\frac{2}{3}{y}_{0}^{2}$=0,又${y}_{0}^{2}$=$\frac{^{2}}{{a}^{2}}({a}^{2}-{x}_{0}^{2})$,
化為:${c}^{2}{x}_{0}^{2}$-2a2cx0+a2(a2-c2)=0,
解得x0=$\frac{a(a+c)}{c}$,或x0=$\frac{a(a-c)}{c}$,
∵-a<x0<a,
∴x0=$\frac{a(a-c)}{c}$,∴0<$\frac{a(a-c)}{c}$<a,
化為:$\frac{1}{2}<e<1$.
則橢圓離心率e的取值范圍是($\frac{1}{2}$,1).
故選:D.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、向量坐標(biāo)運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系、不等式的解法與性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 48π | B. | 36π | C. | 24π | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A與B互斥 | B. | 任何兩個(gè)均互斥 | C. | B與C互斥 | D. | 任何兩個(gè)均對(duì)立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{8}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(bx)≥f(ax) | B. | f(bx)≤f(ax) | ||
C. | f(bx)<f(ax) | D. | f(bx)與f(ax)的大小關(guān)系不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | -6 | C. | $-\frac{14}{3}$ | D. | ±6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com