已知xR,求證 x6x5 + 1 > 0

 

答案:
解析:

證明:當(dāng)x < 0時,x6 > 0,  x6x5 +1 > 0;
當(dāng)0 ≤ x < 1時,x6 ≥ 0,0 ≤ x5 < 1  x6x5 +1 > 0;
當(dāng)x ≥ 1時,x6x5 +1 = x5 (x-1) +1≥0 + 1 > 0.

    綜上,結(jié)論得證。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

15、已知x∈R,求證:ex≥x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
ax2+bx(a≠0)

(1)當(dāng)a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求實數(shù)b的取值范圍;
(2)令V(x)=2f(x)-x2-kx(k∈R),如果V(x)的圖象與x軸交于A(x1,0)、B(x2,0)兩點(0<x1<x2),且線段AB的中點為C(x0,0),函數(shù)V(x)的導(dǎo)函數(shù)為V′(x),求證:V′(x0)≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+4ax+b-1(a≠0且a,b∈R),不等式|f(x)|≤|2x2+8x-10|恒成立.
(Ⅰ)求證:-5和1是函數(shù)f(x)的兩個零點;并求實數(shù)a,b滿足的關(guān)系式;
(Ⅱ)求函數(shù)f(x)在區(qū)間[a,2](a<2)上的最小值g(a);
(Ⅲ)令F(x)=
f(x), x>0
-f(x)  x<0
,若mn<0,m+n>0,試確定F(m)+F(n)的符號,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)壓軸大題訓(xùn)練:函數(shù)與不等式的恒成立問題(解析版) 題型:解答題

已知x>,函數(shù)f(x)=x2,h(x)=2e lnx(e為自然常數(shù)).
(Ⅰ)求證:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,則稱函數(shù)h(x)的圖象為函數(shù)f(x),g(x)的“邊界”.已知函數(shù)g(x)=-4x2+px+q(p,q∈R),試判斷“函數(shù)f(x),g(x)以函數(shù)h(x)的圖象為邊界”和“函數(shù)f(x),g(x)的圖象有且僅有一個公共點”這兩個條件能否同時成立?若能同時成立,請求出實數(shù)p、q的值;若不能同時成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年河南省鄭州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知x>,函數(shù)f(x)=x2,h(x)=2e lnx(e為自然常數(shù)).
(Ⅰ)求證:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,則稱函數(shù)h(x)的圖象為函數(shù)f(x),g(x)的“邊界”.已知函數(shù)g(x)=-4x2+px+q(p,q∈R),試判斷“函數(shù)f(x),g(x)以函數(shù)h(x)的圖象為邊界”和“函數(shù)f(x),g(x)的圖象有且僅有一個公共點”這兩個條件能否同時成立?若能同時成立,請求出實數(shù)p、q的值;若不能同時成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案