5.已知二項(xiàng)式 ($\frac{1}{2}$x+2)n
(1)當(dāng)n=4時(shí),寫出該二項(xiàng)式的展開式;
(2)若展開式的前三項(xiàng)的二項(xiàng)式系數(shù)的和等于79,則展開式中第幾項(xiàng)的二項(xiàng)式系數(shù)最大?

分析 (1)當(dāng)n=4時(shí),($\frac{1}{2}$x+2)n =($\frac{1}{2}$x+2)4,按照二項(xiàng)式定理展開可得結(jié)論.
(2)由題意可得${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$=79,求得n=12,再根據(jù)二項(xiàng)式系數(shù)的性質(zhì),可得第7項(xiàng)(r=6)的二項(xiàng)式系數(shù)最大.

解答 解:(1)當(dāng)n=4時(shí),($\frac{1}{2}$x+2)n =($\frac{1}{2}$x+2)4=$\frac{{x}^{4}}{16}$+x3+6x2+16x+16.
(2)若展開式的前三項(xiàng)的二項(xiàng)式系數(shù)的和等于79,
則${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$=1+n+$\frac{n(n-1)}{2}$=79,求得n=12,
再根據(jù)二項(xiàng)式系數(shù)的性質(zhì),第7項(xiàng)(r=6)的二項(xiàng)式系數(shù)最大.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,已知2a2=a1+a3,數(shù)列$\left\{{\sqrt{S_n}}\right\}$是公差為1的等差數(shù)列,數(shù)列{bn}滿足b1=$\frac{1}{2}$,bn+1=$\frac{n+1}{2n}{b_n}$,記數(shù)列{bn}的前n項(xiàng)和為Tn
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式及前n項(xiàng)和;
(2)若不等式$\frac{{({S_n}+\sqrt{S_n})(2-{T_n})}}{n+2}$≤λ恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對價(jià)格y(單位:千元/噸)和利潤z的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如表:
x12345
y76542
(1)求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時(shí),年利潤z取到最大值?(保留兩位小數(shù))
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.關(guān)于函數(shù)f(x)=3cos(2x-$\frac{π}{6}$)(x∈R),有下列結(jié)論:
①f(x)表達(dá)式可寫為y=3sin(2x+$\frac{π}{3}$);   
②f(x)的最小正周期為2π;
③f(x)的圖象關(guān)于x=$\frac{π}{3}$對稱;           
④f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{12}$]上單調(diào)遞增.
其中正確的結(jié)論是①④.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.經(jīng)過兩條直線3x+y=0與x+3y-8=0的交點(diǎn),且平行于直線x-2y+3=0的直線方程為(  )
A.2x+y-1=0B.x-2y+7=0C.x-2y-5=0D.2x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某年級有12個(gè)班,現(xiàn)要從2班到12班中選1個(gè)班的學(xué)生參加一項(xiàng)活動,有人提議:擲兩個(gè)骰子,把得到的點(diǎn)數(shù)之和是幾就選幾班,這種選法( 。
A.公平,每個(gè)班被選到的概率都為$\frac{1}{12}$B.公平,每個(gè)班被選到的概率都為$\frac{1}{6}$
C.不公平,6班被選到的概率最大D.不公平,7班被選到的概率最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=ax3+bx-3,其中a,b為常數(shù),若f(-2)=2,則f(2)的值等于-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(-3,1),求$\overrightarrow{a}$•$\overrightarrow$,|$\overrightarrow{a}$|,|$\overrightarrow$|,<$\overrightarrow{a}$,$\overrightarrow$>.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.y=$\frac{2x-1}{x+5}$的值域?yàn)椋?∞,2)∪(2,+∞).

查看答案和解析>>

同步練習(xí)冊答案