【答案】
分析:(1)各項(xiàng)均為整數(shù)的數(shù)列{a
n}滿足:a
9=-1,a
13=4,且前12項(xiàng)依次成等差數(shù)列,從第11項(xiàng)起依次成等比數(shù)列,列方程,分別求出等差數(shù)列的公差和等比數(shù)列的公比,即可求出數(shù)列{a
n}的通項(xiàng)公式;(2)根據(jù)(1)得出數(shù)列{a
n}為:-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,4,8,16,…,分類討論當(dāng)a
m,a
m+1,…,a
m+p均為負(fù)數(shù)和當(dāng)a
m,a
m+1,…,a
m+p均為正數(shù),
可得a
m+a
m+1+…+a
m+p=0,根據(jù)負(fù)數(shù)項(xiàng)只有九項(xiàng),我們按負(fù)數(shù)項(xiàng)分類:即可求得結(jié)果.
解答:解:(1)設(shè)由前12項(xiàng)構(gòu)成的等差數(shù)列的公差為d,從第11項(xiàng)起構(gòu)成的等比數(shù)列的公比為q,
由
,可得
,或
.
又?jǐn)?shù)列{a
n}各項(xiàng)均為整數(shù),故
; 所以,
.
(2)數(shù)列{a
n}為:-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,4,8,16,…
當(dāng)a
m,a
m+1,…,a
m+p均為負(fù)數(shù)時(shí),
顯然a
m+a
m+1+…+a
m+p<0,所以a
ma
m+1…a
m+p<0,即a
m,a
m+1,…,a
m+p共有奇數(shù)項(xiàng),即p為偶數(shù);
又最多有9個(gè)負(fù)數(shù)項(xiàng),所以p≤8,p=2時(shí),經(jīng)驗(yàn)算只有(-3)+(-2)+(-1)=(-3)•(-2)•(-1)符合,
此時(shí)m=7;p=4,6,8時(shí),經(jīng)驗(yàn)算沒有一個(gè)符合;
故當(dāng)a
m,a
m+1,…,a
m+p均為負(fù)數(shù)時(shí),存在有序數(shù)對(7,2)符合要求.
當(dāng)a
m,a
m+1,…,a
m+p均為正數(shù)時(shí),m≥11且m∈N
*,
a
m+a
m+1+…+a
m+p=2
m-11+2
m-10+…+2
m+p-11=2
m-11(1+2+…+2
p)=2
m-11(2
p+1-1)
因?yàn)?
p+1-1是比1大的奇數(shù),所以a
m+a
m+1+…+a
m+p能被某個(gè)大于1的奇數(shù)(2
p+1-1)整除,
而
不存在大于1的奇約數(shù),故a
m+a
m+1+…+a
m+p≠a
ma
m+1…a
m+p;
故當(dāng)a
m,a
m+1,…,a
m+p均為正數(shù)時(shí),不存在符合要求有序數(shù)對;
當(dāng)a
m,a
m+1,…,a
m+p中既有正數(shù)又有負(fù)數(shù),即a
m,a
m+1,…,a
m+p中含有0時(shí),
有a
ma
m+1…a
m+p=0,所以a
m+a
m+1+…+a
m+p=0,
因?yàn)樨?fù)數(shù)項(xiàng)只有九項(xiàng),我們按負(fù)數(shù)項(xiàng)分類:
含1個(gè)負(fù)數(shù)項(xiàng)時(shí),-1,0,1,符合,此時(shí)m=9,p=2;
含2個(gè)負(fù)數(shù)項(xiàng)時(shí),-2,-1,0,1,2,符合,此時(shí)m=8,p=4;
含3個(gè)或4個(gè)負(fù)數(shù)項(xiàng)時(shí),經(jīng)驗(yàn)算不存在符合要求的;
含5個(gè)負(fù)數(shù)項(xiàng)時(shí),-5,-4,-3-2,-1,0,1,2,4,8,符合,此時(shí)m=5,p=9;
含6個(gè)及6個(gè)以上負(fù)數(shù)項(xiàng)時(shí),經(jīng)驗(yàn)算不存在符合要求的;
故當(dāng)a
m,a
m+1,…,a
m+p中既有正數(shù)又有負(fù)數(shù)時(shí),存在三組有序數(shù)對(9,2),(8,4),(5,9)符合要求;
綜上,存在四組有序數(shù)對(9,2),(8,4),(5,9),(7,2)符合要求.
點(diǎn)評:本題是難題,考查等比數(shù)列和等差數(shù)列的綜合問題,考查分析問題解決問題的能力和運(yùn)算能力,體現(xiàn)了分類討論的數(shù)學(xué)思想方法.