【題目】已知下列命題:
①命題“ , ”的否定是:“ , ”;
②若樣本數(shù)據(jù) 的平均值和方差分別為 和 則數(shù)據(jù) 的平均值和標(biāo)準(zhǔn)差分別為 , ;
③兩個(gè)事件不是互斥事件的必要不充分條件是兩個(gè)事件不是對(duì)立事件;
④在 列聯(lián)表中,若比值 與 相差越大,則兩個(gè)分類變量有關(guān)系的可能性就越大.
⑤已知 為兩個(gè)平面,且 , 為直線.則命題:“若 ,則 ”的逆命題和否命題均為假命題.
⑥設(shè)定點(diǎn) 、 ,動(dòng)點(diǎn) 滿足條件 為正常數(shù)),則 的軌跡是橢圓.其中真命題的個(gè)數(shù)為( )
A.5
B.4
C.3
D.2
【答案】A
【解析】①命題“ , ”的否定是:“ , ”,命題正確;
②數(shù)據(jù) 的標(biāo)準(zhǔn)差 ,平均數(shù)為: ,命題正確;
③其逆否命題是:兩事件是對(duì)立事件的必要不充分條件是兩個(gè)事件是互斥事件.命題正確;
④ ﹣ = ,∵ad﹣bc相差越大,兩個(gè)分類變量有關(guān)系的可能性就越大,
∴ ﹣ =相差越大,兩個(gè)分類變量有關(guān)系的可能性就越大,命題正確;
⑤逆命題:已知 為兩個(gè)平面,且 , 為直線.則命題:“若 ,則 ”顯然l與平面 關(guān)系不確定,所以逆命題為假命題,逆命題與否命題同真同假,故二者同為假命題;
⑥當(dāng) 時(shí), 的軌跡是線段,顯然命題是假命題;
所以真命題個(gè)數(shù)為5個(gè)
故答案為:A
根據(jù)題意由特稱命題和全稱命題、平均數(shù)與標(biāo)準(zhǔn)方差的運(yùn)算、對(duì)立事件與互斥事件的關(guān)系、獨(dú)立性檢驗(yàn)、線面位置關(guān)系的判斷、橢圓定義的運(yùn)用,深入淺出的考察了對(duì)這些個(gè)基本知識(shí)與基本方法的運(yùn)用。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 為圓柱 的母線, 是底面圓 的直徑, 是 的中點(diǎn).
(Ⅰ)問(wèn): 上是否存在點(diǎn) 使得 平面 ?請(qǐng)說(shuō)明理由;
(Ⅱ)在(Ⅰ)的條件下,若 平面 ,假設(shè)這個(gè)圓柱是一個(gè)大容器,有條體積可以忽略不計(jì)的小魚能在容器的任意地方游弋,如果小魚游到四棱錐 外會(huì)有被捕的危險(xiǎn),求小魚被捕的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于橢圓 ,有如下性質(zhì):若點(diǎn) 是橢圓上的點(diǎn),則橢圓在該點(diǎn)處的切線方程為 .利用此結(jié)論解答下列問(wèn)題.
(Ⅰ)求橢圓 的標(biāo)準(zhǔn)方程;
(Ⅱ)若動(dòng)點(diǎn) 在直線 上,經(jīng)過(guò)點(diǎn) 的直線 與橢圓 相切,切點(diǎn)分別為 .求證直線 必經(jīng)過(guò)一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)x,y滿足不等式組 ,若z=ax+y的最大值為2a+4,最小值為a+1,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線 過(guò) ,傾斜角為 .以 為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為 .
(Ⅰ)求直線 的參數(shù)方程和曲線 的直角坐標(biāo)方程;
(Ⅱ)已知直線 與曲線 交于 、 兩點(diǎn),且 ,求直線 的斜率 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為 ,且橢圓 過(guò)點(diǎn) ,直線 過(guò)橢圓 的右焦點(diǎn) 且與橢圓 交于 兩點(diǎn).
(Ⅰ)求橢圓 的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn) ,求證:若圓 與直線 相切,則圓 與直線 也相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex-e-x(x∈R,且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;
(2)是否存在實(shí)數(shù)t , 使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x∈R都成立?若存在,求出t;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com