在一定范圍內(nèi),某種產(chǎn)品的購買量y噸與單價x元之間滿足一次函數(shù)關(guān)系,如果購買1000噸,每噸為800元,購買2000噸,每噸700元,那么客戶購買400噸,單價應(yīng)該為          元.
5000
本試題主要是考查了待定系數(shù)法的函數(shù)解析式的求解和運(yùn)用。
購買1000噸,每噸為800元,1000=800k+b;
若購買2000噸,每噸為700元,2000=700k+b.
解方程組1000=800k+b,2000=700k+b
得到k=-10,b=9000函數(shù)關(guān)系式為y=-10x+9000.當(dāng)y=400時,解得x=5000.故答案為單價應(yīng)是5000元,故答案為5000元。
解決這類問題的關(guān)鍵是設(shè)出解析式,然后將已知的變量和函數(shù)值代入解析式得到參數(shù)的值,進(jìn)而運(yùn)用其求解別的變量的函數(shù)值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)已知函數(shù)
(1)是否存在實(shí)數(shù)使函數(shù)f(x)為奇函數(shù)?證明你的結(jié)論;
(2)用單調(diào)性定義證明:不論取任何實(shí)數(shù),函數(shù)f(x)在其定義域上都是增函數(shù);
(3)若函數(shù)f(x)為奇函數(shù),解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是定義在上的奇函數(shù),當(dāng)時,
(1)求函數(shù)的解析式;
(2)畫出函數(shù)的圖象,并求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)為何值時,方程有三個解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),則________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是定義在上的奇函數(shù),且,若時,有成立.
(1)判斷上的單調(diào)性,并證明;
(2)解不等式:
(3)若當(dāng)時,對所有的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的值域是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)在映射“”的作用下的象是,則在映射作用下點(diǎn)的原象是(   )                                                                 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知某食品廠需要定期購買食品配料,該廠每天需要食品配料200千克,配料的價格為元/千克,每次購買配料需支付運(yùn)費(fèi)236元.每次購買來的配料還需支付保管費(fèi)用(若天購買一次,需要支付天的保管費(fèi))。其標(biāo)準(zhǔn)如下: 7天以內(nèi)(含7天),無論重量多少,均按10元/天支付;超出7天以外的天數(shù),根據(jù)實(shí)際剩余配料的重量,以每天0.03元/千克支付.
(1)當(dāng)9天購買一次配料時,求該廠用于配料的保管費(fèi)用是多少元?[
(2)設(shè)該廠天購買一次配料,求該廠在這天中用于配料的總費(fèi)用(元)關(guān)于的函數(shù)關(guān)系式,并求該廠多少天購買一次配料才能使平均每天支付的費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖像中,能表示函數(shù)圖像的是(      )

A                   B                C                 D

查看答案和解析>>

同步練習(xí)冊答案