【題目】如圖,是一個三棱錐,是圓的直徑,是圓上的點,垂直圓所在的平面,,分別是棱,的中點.
(1)求證:平面;
(2)若二面角是,,求與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)可證,,再利用可得,,從而可證平面.
(2)可證為二面角的平面角,再以為坐標原點,,,方向分別為軸,軸,軸的正方向,建立如圖所示的空間直角坐標系. 求出平面的法向量和直線的方向向量后可求與平面所成角的正弦值.
(1)因為是圓的直徑,所以.
因為垂直圓所在的平面,且在該平面中,所以.
因為,分別是棱,的中點,
所以,所以,
又因為,所以有平面.
(2)由(1)可知,,,
所以為二面角的平面角,
從而有,則.
又,,得.
以為坐標原點,,,方向分別為軸,軸,軸的正方向,建立如圖所示的空間直角坐標系.
則,,,
,,,
,,
.
設是平面的法向量,則
即可取.
故.
所以直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】為了了解居民的家庭收人情況,某社區(qū)組織工作人員從該社區(qū)的居民中隨機抽取了戶家庭進行問卷調查.經調查發(fā)現(xiàn),這些家庭的月收人在元到元之間,根據統(tǒng)計數(shù)據作出如圖所示的頻率分布直方圖.已知圖中從左至右第一 、二、四小組的頻率之比為,且第四小組的頻數(shù)為.
(1)求;
(2)求這戶家庭月收人的眾數(shù)與中位數(shù)(結果精確到);
(3)這戶家庭月收入在第一、二、三小組的家庭中,用分層抽樣的方法任意抽取戶家庭,并從這戶家庭中隨機抽取戶家庭進行慰問,求這戶家庭月收入都不超過元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件,為激發(fā)大家的學習興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動,這款軟件的激活碼為下列數(shù)學問題的答案:已知數(shù)列1、1、2、1、2、4、8、1、2、4、8、16、……,其中第一項是,接下來的兩項是,再接下來的三項是,……,以此類推,求滿足如下條件的最小整數(shù)且該數(shù)列的前項和為2的整數(shù)冪,那么該軟件的激活碼是________。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四邊形為正方形,平面,四邊形與四邊形也都為正方形,連接,點為的中點,有下述四個結論:
①; 、與所成角為;
③平面; 、與平面所成角為.
其中所有正確結論的編號是( )
A.①②B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體中,,平面⊥平面,四邊形為矩形,∥,點在線段上,且.
(1)求證:⊥平面;
(2)若,求多面體被平面分成的大、小兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某創(chuàng)業(yè)團隊擬生產兩種產品,根據市場預測,產品的利潤與投資額成正比(如圖1),產品的利潤與投資額的算術平方根成正比(如圖2).(注: 利潤與投資額的單位均為萬元)
(注:利潤與投資額的單位均為萬元)
(1)分別將兩種產品的利潤、表示為投資額的函數(shù);
(2)該團隊已籌集到10 萬元資金,并打算全部投入兩種產品的生產,問:當產品的投資額為多少萬元時,生產兩種產品能獲得最大利潤,最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:過點,為其焦點,過且不垂直于軸的直線交拋物線于,兩點,動點滿足的垂心為原點.
(1)求拋物線的方程;
(2)求證:動點在定直線上,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,已知四邊形是邊長為的正方形,點在底面上的射影為底面的中心點,點在棱上,且的面積為1.
(1)若點是的中點,求證:平面平面;
(2)在棱上是否存在一點使得二面角的余弦值為?若存在,求出點的位置;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com