數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*).證明數(shù)列{nan}(n≥2)為等比數(shù)列.
考點(diǎn):等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:在數(shù)列遞推式中取n=n-1,得到a1+2a2+3a3+…+(n-1)an-1=
n
2
an(n≥2)
,兩遞推式作差后得答案.
解答: 證明:∵a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)
,
a1+2a2+3a3+…+(n-1)an-1=
n
2
an(n≥2)
,
兩式相減得nan=
n+1
2
an+1-
n
2
an
,
(n+1)an+1
nan
=3(n≥2)
,
因此,數(shù)列{nan}從第二項(xiàng)起,是以2為首項(xiàng),以3為公比的等比數(shù)列.
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了等比關(guān)系的確定,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一組數(shù)據(jù)的平均數(shù)是3,將這組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都乘以2,所得到的一組數(shù)據(jù)的平均數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:(-6)15÷(-8)5÷(-9)7+(-0.75)3×(-2)6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),生產(chǎn)的零件會(huì)有一些缺損,按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如下表
轉(zhuǎn)速x轉(zhuǎn)/秒681214
每小時(shí)生產(chǎn)有缺損零件數(shù)y/個(gè)2468
問(wèn):
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)散點(diǎn)圖,判斷轉(zhuǎn)速x和每小時(shí)生產(chǎn)的缺損零件數(shù)y之間是否具有線性關(guān)系;
參考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-
b
x,若有,求回歸直線方程y=bx+a;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且經(jīng)過(guò)點(diǎn)(1,
3
2
),點(diǎn)A(xA,yA),(yA>0)是橢圓上一點(diǎn),連接AF1,AF2并延長(zhǎng)交橢圓于B,C兩點(diǎn).
(1)求橢圓方程;
(2)若
AF1
=
5
3
F1B
,求點(diǎn)A坐標(biāo);
(3)當(dāng)B,C的縱坐標(biāo)之比等于2時(shí),求點(diǎn)A坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是等比數(shù)列,對(duì)任意n∈N*,Tn=a1+3a2+5a3+…+(2n-1)an,已知T1=1,T2=7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求使得Tn+1<2(Tn+60)成立的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是R上的奇函數(shù),當(dāng)x∈(0,+∞)時(shí),f(x)=x2+x-1.
(1)求f(0)的值;
(2)求x∈(-∞,0)時(shí),f(x)的解析式;
(3)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=2a與y=|ax-1|有交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
π
4
<α<
4
,0<β<
π
4
,cosα=-
3
5
,sinβ=
5
13
,求sin(α+β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案