如圖,在四棱錐中,底面是直角梯形,,,
平面平面,若,,,,且.
(1)求證:平面;
(2)設平面與平面所成二面角的大小為,求的值.
(1)參考解析;(2)
解析試題分析:(1)由,所以.又,.在三角形PAO中由余弦定理可得.所以.即.又平面平面且平面平面=AD,平面PAD.所以平面.
(2)由題意可得建立空間坐標系,寫出相應點的坐標,平面PAD的法向量易得,用待定系數(shù)寫出平面PBC的法向量,根據(jù)兩向量的法向量夾角的余弦值,求出二面角的余弦值.
(1)因為 ,,所以, 1分
在中,由余弦定理,
得, 3分
,, 4分
, 5分
又平面平面,平面平面,平面,
平面. 6分
(2)如圖,過作交于,則,,兩兩垂直,以為坐標原點,分別以,,所在直線為軸,建立空間直角坐標系, 7分
則,,
8分
,
, 9分
設平面的一個法向量為,
由得即
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,已知空間四邊形ABCD的每條邊和對角線長都等于1,點E、F、G分別是AB、AD、CD的中點,計算:
(1)·;
(2)·;
(3)EG的長;
(4)異面直線AG與CE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱錐中,直線平面,且
,又點,,分別是線段,,的中點,且點是線段上的動點.
證明:直線平面;
(2) 若,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,三棱錐中,,,,點在平面內的射影恰為的重心,M為側棱上一動點.
(1)求證:平面平面;
(2)當M為的中點時,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com