【題目】已知函數(shù)

1)證明:函數(shù)fx)在(0π)上是減函數(shù);

2)若, ,求m的取值范圍.

【答案】1)詳見(jiàn)解析;(2)(﹣,0]

【解析】

1)求導(dǎo),結(jié)合基本不等式可得≤0在(0π)上恒成立,由此即可得證;

2)當(dāng)m≤0時(shí),由(1上成立;當(dāng)m0時(shí),利用導(dǎo)數(shù)可推導(dǎo)存在,使得矛盾,綜合即可得出結(jié)論.

1)因?yàn)?/span>,

,當(dāng)且僅當(dāng)sinx1時(shí)取等號(hào),

故函數(shù)在(0,π)上是減函數(shù);

2)因?yàn)?/span>,當(dāng)m≤0時(shí),由(1)知,成立;

當(dāng)m0時(shí),令,=﹣sinx+10

上單調(diào)遞增,

,即

,

,

,

,

2mcos2xx,=﹣4mcosxsinx10,

上單調(diào)遞減,

上遞增,

,

∴存在,使得qt)=0,即時(shí),0,

0,則遞增,故

∴存在,使得矛盾,

∴實(shí)數(shù)m的取值范圍為(﹣,0]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,已知a1+a312,a2+a418,nN*.

1)求數(shù)列{an}的通項(xiàng)公式;

2)求a3+a6+a9++a3n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯在他的著作《圓錐曲線論》中記載了用平面切制圓錐得到圓錐曲線的方法.如圖,將兩個(gè)完全相同的圓錐對(duì)頂放置(兩圓錐的軸重合),已知兩個(gè)圓錐的底面半徑為1,母線長(zhǎng)均為,記過(guò)圓錐軸的平面ABCD為平面與兩個(gè)圓錐面的交線為ACBD),用平行于的平面截圓錐,該平面與兩個(gè)圓錐側(cè)面的截線即為雙曲線E的一部分,且雙曲線E的兩條漸近線分別平行于ACBD,則雙曲線E的離心率為(

A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全面建成小康社會(huì)的決勝階段,讓貧困地區(qū)同全國(guó)人民共同進(jìn)入全面小康社會(huì)是我們黨的莊嚴(yán)承諾.在“脫真貧、真脫貧”的過(guò)程中,精準(zhǔn)扶貧助推社會(huì)公平顯得尤其重要.若某農(nóng)村地區(qū)有200戶貧困戶,經(jīng)過(guò)一年扶貧后,對(duì)該地區(qū)的“精準(zhǔn)扶貧”的成效檢查驗(yàn)收.從這200戶貧困戶中隨機(jī)抽出50戶,對(duì)各戶的人均年收入(單位:千元)進(jìn)行調(diào)查得到如下頻數(shù)表:

人均年收入

頻數(shù)

2

3

10

20

10

5

若人均年收入在4000元以下的判定為貧困戶,人均年收入在4000元~8000元的判定為脫貧戶,人均年收入達(dá)到8000元的判定為小康戶.

1)用樣本估計(jì)總體,估計(jì)該地區(qū)還有多少戶沒(méi)有脫貧;

2)為了了解未脫貧的原因,從抽取的50戶中用分層抽樣的方法抽10戶進(jìn)行調(diào)研.

①貧困戶、脫貧戶、小康戶分別抽到的人數(shù)是多少?

②從被抽到的脫貧戶和小康戶中各選1人做經(jīng)驗(yàn)介紹,求小康戶中人均年收入最高的一戶被選到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】日,某地援鄂醫(yī)護(hù)人員,,,,,人(其中是隊(duì)長(zhǎng))圓滿完成抗擊新冠肺炎疫情任務(wù)返回本地,他們受到當(dāng)?shù)厝罕娕c領(lǐng)導(dǎo)的熱烈歡迎.當(dāng)?shù)孛襟w為了宣傳他們的優(yōu)秀事跡,讓這名醫(yī)護(hù)人員和接見(jiàn)他們的一位領(lǐng)導(dǎo)共人站一排進(jìn)行拍照,則領(lǐng)導(dǎo)和隊(duì)長(zhǎng)站在兩端且相鄰,而不相鄰的排法種數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年第十三屆女排世界杯共12支參賽球隊(duì),比賽賽制釆取單循環(huán)方式,即每支球隊(duì)進(jìn)行11場(chǎng)比賽,最后靠積分選出最后冠軍.積分規(guī)則如下(比賽采取53勝制):比賽中以3—03—1取勝的球隊(duì)積3分,負(fù)隊(duì)積0分;而在比賽中以3—2取勝的球隊(duì)積2分,負(fù)隊(duì)積1分.9輪過(guò)后,積分榜上的前2名分別為中國(guó)隊(duì)和美國(guó)隊(duì),中國(guó)隊(duì)積26分,美國(guó)隊(duì)積22分.第10輪中國(guó)隊(duì)對(duì)抗塞爾維亞隊(duì),設(shè)每局比賽中國(guó)隊(duì)取勝的概率為

1)第10輪比賽中,記中國(guó)隊(duì)3—1取勝的概率為,求的最大值點(diǎn)

2)以(1)中的作為的值.

i)在第10輪比賽中,中國(guó)隊(duì)所得積分為,求的分布列;

)已知第10輪美國(guó)隊(duì)積3分,判斷中國(guó)隊(duì)能否提前一輪奪得冠軍(第10輪過(guò)后,無(wú)論最后一輪即第11輪結(jié)果如何,中國(guó)隊(duì)積分最多)?若能,求出相應(yīng)的概率;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若處的切線為

(Ⅰ)求實(shí)數(shù),的值;

(Ⅱ)若不等式對(duì)任意恒成立,求的取值范圍;

(Ⅲ)設(shè)其中,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求a;

(2)證明:存在唯一的極大值點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用 y(萬(wàn)元),有如下的統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

若由資料可知y對(duì)x呈線性相關(guān)關(guān)系,且線性回歸方程為ya+bx,其中已知b=1.23,請(qǐng)估計(jì)使用年限為20年時(shí),維修費(fèi)用約為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案