(2013•湖北)已知Sn是等比數(shù)列{an}的前n項和,S4,S2,S3成等差數(shù)列,且a2+a3+a4=﹣18.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)n,使得Sn≥2013?若存在,求出符合條件的所有n的集合;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系中,以原點為極點,x軸的正半輻為極軸建立極坐標系,已知曲線,過點P(-2,-4)的直線 的參數(shù)方程為:(t為參數(shù)),直線與曲線C相交于M,N兩點.
(Ⅰ)寫出曲線C的直角坐標方程和直線的普通方程;
(Ⅱ)若成等比數(shù)列,求a的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}為等差數(shù)列,a3=5,a7=13,數(shù)列{bn}的前n項和為Sn,且有Sn=2bn-1,
(1)求{an},{bn}的通項公式.
(2)若cn=anbn,{cn}的前n項和為Tn,求Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}成等比數(shù)列,且an>0.
(1)若a2-a1=8,a3=m.
①當m=48時,求數(shù)列{an}的通項公式;
②若數(shù)列{an}是唯一的,求m的值;
(2)若a2k+a2k-1+ +ak+1- (ak+ak-1+ +a1 )=8,k∈N*,求a2k+1+a2k+2+ +a3k的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設數(shù)列{an}的首項不為零,前n項和為Sn,且對任意的r,tN*,都有.
(1)求數(shù)列{an}的通項公式(用a1表示);
(2)設a1=1,b1=3,,求證:數(shù)列為等比數(shù)列;
(3)在(2)的條件下,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知正項數(shù)列{an},其前n項和Sn滿足6Sn=+3an+2,且a1,a2,a6是等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記Tn=a1bn+a2bn-1+…+anb1,n∈N*,證明:3Tn+1=2bn+1-an+1(n∈N*).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com