7.在△ABC中,a、b、c分別為A、B、C的對(duì)邊,a=$\sqrt{6}$,b=4,2cos2AsinB=(2-cosB)sin2A.
(1)求c的值;
(2)求△ABC的面積.

分析 (1)展開(kāi)等式右邊的二倍角正弦,約分后移項(xiàng),利用兩角和的正弦化簡(jiǎn),再由已知結(jié)合正弦定理得答案;
(2)利用余弦定理求出cosC,再由平方關(guān)系求得sinC,代入面積公式求得△ABC的面積.

解答 解:(1)由2cos2AsinB=(2-cosB)sin2A,得
2cos2AsinB=2(2-cosB)sinAcosA,即sinAcosB+cosAsinB=2sinA,
∴sin(A+B)=2sinA,
∴sinC=2sinA,
又a=$\sqrt{6}$,
∴c=a•$\frac{sinC}{sinA}$=$\sqrt{6}×2=2\sqrt{6}$;
(2)∵a=$\sqrt{6}$,b=4,c=$2\sqrt{6}$,
∴$cosC=\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}=\frac{(\sqrt{6})^{2}+{4}^{2}-(2\sqrt{6})^{2}}{2×\sqrt{6}×4}$=$-\frac{\sqrt{6}}{24}$,
∴sinC=$\sqrt{1-(-\frac{\sqrt{6}}{24})^{2}}$=$\frac{\sqrt{570}}{24}$.
∴${S}_{△ABC}=\frac{1}{2}ab•sinC=\frac{1}{2}×\sqrt{6}×4×\frac{\sqrt{570}}{24}$=$\frac{\sqrt{95}}{2}$.

點(diǎn)評(píng) 本題考查同角三角函數(shù)的恒等變換應(yīng)用,考查三角形的解法,訓(xùn)練了正弦定理和余弦定理在解三角形中的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcos\frac{8π}{3}}\\{y=-4+tsin\frac{8π}{3}}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ2-3ρ-4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求∠AOB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,△BCD內(nèi)接于⊙O,過(guò)B作⊙O的切線AB,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,且DB⊥BE.求證:DB=DC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知變換T:$[\begin{array}{l}{x}\\{y}\end{array}]$→$[\begin{array}{l}{{x}^{′}}\\{y′}\end{array}]$=$[\begin{array}{l}{x+2y}\\{y}\end{array}]$,試寫出變換T對(duì)應(yīng)的矩陣A,并求出其逆矩陣A-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,⊙O的直徑AB的延長(zhǎng)線與弦CD的延長(zhǎng)線相交于點(diǎn)P,E為⊙O上一點(diǎn),$\widehat{AE}$=$\widehat{AC}$,DE交AB于點(diǎn)F,且AB=2BP=8,
(1)求PF的長(zhǎng)度;
(2)若圓F與圓O 內(nèi)切,直線PT與圓F切于點(diǎn)T,求線段PT的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.為及時(shí)了解適齡公務(wù)員對(duì)開(kāi)放生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了90位30歲到40歲的公務(wù)員,得到情況如表:
(1)完成表格,并判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”,并說(shuō)明理由;
(2)現(xiàn)把以上頻率當(dāng)作概率,若從社會(huì)上隨機(jī)獨(dú)立抽取三位30歲到40歲的男公務(wù)員訪問(wèn),求這三人中至少有一人有意愿生二胎的概率.
(2)已知15位有意愿生二胎的女性公務(wù)員中有兩位來(lái)自省婦聯(lián),該部門打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請(qǐng)兩位來(lái)參加座談,設(shè)邀請(qǐng)的2人中來(lái)自省女聯(lián)的人數(shù)為X,求X的公布列及數(shù)學(xué)期望E(X).
男性公務(wù)員女性公務(wù)員總計(jì)
有意愿生二胎3015
無(wú)意愿生二胎2025
總計(jì)
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=lnx-x零點(diǎn)的個(gè)數(shù)為(  )
A.無(wú)窮多B.3C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.直線y=$\frac{1}{2}$x與雙曲線$\frac{x^2}{9}-\frac{y^2}{4}$=1交于A,B兩點(diǎn),P為雙曲線上不同于A,B的點(diǎn),當(dāng)直線PA,PB的斜率kPA,kPB存在時(shí),kPA•kPB等于( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{9}$D.與P的位置有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)集合A={(x,y)|(x+3)2+(y-4)2=5},B={(x,y)|(x+3)2+(y-4)2=20},C={(x,y)|2|x+3|+|y-4|=λ},若(A∪B)∩C≠∅,則實(shí)數(shù)λ的取值范圍是[$\sqrt{5}$ 10].

查看答案和解析>>

同步練習(xí)冊(cè)答案