【題目】某公司制定了一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:對(duì)于每位銷售人員,均以10萬元為基數(shù),若銷售利潤(rùn)沒超出這個(gè)基數(shù),則可獲得銷售利潤(rùn)的5%的獎(jiǎng)金;若銷售利潤(rùn)超出這個(gè)基數(shù)(超出的部分是a萬元),則可獲得萬元的獎(jiǎng)金.記某位銷售人員獲得的獎(jiǎng)金為y(單位:萬元),其銷售利潤(rùn)為x(單位:萬元).
(1)寫出這位銷售人員獲得的獎(jiǎng)金y與其銷售利潤(rùn)x之間的函數(shù)關(guān)系式;
(2)如果這位銷售人員獲得了萬元的獎(jiǎng)金,那么他的銷售利潤(rùn)是多少萬元?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:與直線:,:,過橢圓上的一點(diǎn)作,的平行線,分別交,于,兩點(diǎn),若為定值,則橢圓的離心率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A是橢圓的上頂點(diǎn),斜率為的直線交橢圓E于A、M兩點(diǎn),點(diǎn)N在橢圓E上,且.
(1)當(dāng)時(shí),求的面積;
(2)當(dāng)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率等于.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右焦點(diǎn)作直線交橢圓于兩點(diǎn),交軸于點(diǎn),若,求證為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目.若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有6人 | 6 | 6 | 3 | 1 | 2 | 0 |
選考方案待確定的有8人 | 5 | 4 | 0 | 1 | 2 | 1 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 0 | 0 | 1 | 1 |
(Ⅰ)試估計(jì)該學(xué)校高一年級(jí)確定選考生物的學(xué)生有多少人?
(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學(xué)和地理”的人數(shù).(直接寫出結(jié)果)
(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從該設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:
直徑/ | 78 | 79 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 93 | 合計(jì) |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.
(1)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的頻率):
①;②;③,評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁.試判斷設(shè)備的性能等級(jí).
(2)將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“次品”,將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“突變品”,從樣本的“次品”中隨意抽取2件零件,求“突變品”個(gè)數(shù)的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:的左,右焦應(yīng)分別是,,離心率為,過且垂直于軸的直線被橢圓截得的線段長(zhǎng)為1.
(1)求橢圓的方程;
(2)已知直線:與橢圓切于點(diǎn),直線平行于,與橢圓交于不同的兩點(diǎn)、,且與直線交于點(diǎn).證明:存在常數(shù),使得,并求的值;
(3)點(diǎn)是橢圓上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接,,設(shè)后的角平分線交的長(zhǎng)軸于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD是直角梯形,側(cè)棱底面ABCD,AB垂直于AD和BC,,且.M是棱SB的中點(diǎn).
(Ⅰ)求證:面SCD;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與面SAB所成的角為,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com