分析:(1)根據(jù)S
n=2a
n+n
2-3n-2可得到S
n+1的表達(dá)式S
n+1=2a
n+1+(n+1)
2-3(n+1)-2,兩式相減可得到a
n+1=2a
n-2n+2整理可得a
n+1-2(n+1)=2(a
n-2n),即數(shù)列{a
n-2n}為等比數(shù)列.
(2)先根據(jù)數(shù)列{a
n-2n}為等比數(shù)列求出a
n的表達(dá)式,再對(duì)n分奇偶數(shù)討論可求出數(shù)列{b
n}的前n項(xiàng)和P
n.
(3)將a
n的表達(dá)式代入到
cn=中求出數(shù)列{c
n}的通項(xiàng)公式,進(jìn)而可驗(yàn)證當(dāng)n=1時(shí)滿足
Tn<,然后當(dāng)n≥2時(shí)對(duì)
Tn=+++…+進(jìn)行放縮可得到Tn
<+++…+=
-<<得證.
解答:解:(Ⅰ)∵S
n=2a
n+n
2-3n-2,
∴S
n+1=2a
n+1+(n+1)
2-3(n+1)-2.
∴a
n+1=2a
n-2n+2,∴a
n+1-2(n+1)=2(a
n-2n).
∴{a
n-2n}是以2為公比的等比數(shù)列;
(Ⅱ)a
1=S
1=2a
1-4,∴a
1=4,∴a
1-2×1=4-2=2.
∴a
n-2n=2
n,∴a
n=2
n+2n.
當(dāng)n為偶數(shù)時(shí),P
n=b
1+b
2+b
3+…+b
n=(b
1+b
3+…+b
n-1)+(b
2+b
4+…+b
n)
=-(2+2×1)-(2
3+2×3)-…-[2
n-1+2(n-1)]+(2
2+2×2)+(2
4+2×4)+…+(2
n+2×n)
=
-+n=•(2n-1)+n;
當(dāng)n為奇數(shù)時(shí),Pn=
--(n+1).
綜上,
Pn= | --n-,(n為奇數(shù)) | •(2n-1)+n,(n為偶數(shù)) |
| |
;
(Ⅲ)
cn==.
當(dāng)n=1時(shí),T
1=
<當(dāng)n≥2時(shí),
Tn=+++…+<+++…+=
+=
+-=
-<<綜上可知:任意n∈N,
Tn<.
點(diǎn)評(píng):本題主要考查構(gòu)造等比數(shù)列求通項(xiàng)公式、求數(shù)列的前n項(xiàng)和.考查數(shù)列前n項(xiàng)和的不等式的證明.