【題目】已知函數(shù),則下列結(jié)論正確的是( )
A. 導(dǎo)函數(shù)為
B. 函數(shù)f(x)的圖象關(guān)于直線對(duì)稱
C. 函數(shù)f(x)在區(qū)間上是增函數(shù)
D. 函數(shù)f(x)的圖象可由函數(shù)y=3cos 2x的圖象向右平移個(gè)單位長(zhǎng)度得到
【答案】B
【解析】對(duì)于A,函數(shù)f′(x)=-3sin(2x-)·2=-6sin(2x-),A錯(cuò)誤;
對(duì)于B,當(dāng)x=時(shí),f()=3cos(2×-)=-3取得最小值,所以函數(shù)f(x)的圖象關(guān)于直線x=對(duì)稱,B正確;
對(duì)于C,當(dāng)x∈時(shí),2x-∈(-, ),函數(shù)f(x)=3cos(2x-)不是單調(diào)函數(shù),C錯(cuò)誤;
對(duì)于D,函數(shù)y=3cos 2x的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)y=3cos[2(x-)]=3cos(2x-)的圖象,這不是函數(shù)f(x)的圖象,D錯(cuò)誤.故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:
①“若,則”的否命題是“若,則”;
②“”是“”的必要非充分條件;
③“”是“或”的充分非必要條件;
④“”是“且”的充要條件.
其中正確的序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下,頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計(jì) | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下三個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)為兩個(gè)定點(diǎn),為非零常數(shù),若,則動(dòng)點(diǎn)的軌跡是雙曲線;
②方程的兩根可分別作為橢圓和雙曲線的離心率;
③雙曲線與橢圓有相同的焦點(diǎn);
④已知拋物線,以過焦點(diǎn)的一條弦為直徑作圓,則此圓與準(zhǔn)線相切,其中真命題為__________.(寫出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年7月24日,長(zhǎng)春長(zhǎng)生生物科技有限責(zé)任公司先被查出狂犬病疫苗生產(chǎn)記錄造假,因此,疫苗在上市前必須經(jīng)過嚴(yán)格的檢測(cè),以保證疫苗使用的安全和有效.某生物制品研究所將某一型號(hào)疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如表:現(xiàn)從所有試驗(yàn)小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射疫苗 | 20 | x | A |
注射疫苗 | 30 | y | B |
總計(jì) | 50 | 50 | 100 |
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
(1)求2×2列聯(lián)表中的數(shù)據(jù)的值;
(2)能否有99.9%把握認(rèn)為注射此種疫苗有效?
附:,n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為, 上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和為4,當(dāng)點(diǎn)運(yùn)動(dòng)到橢圓的上頂點(diǎn)時(shí),直線恰與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,若交直線于兩點(diǎn).問以為直徑的圓是否過定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).
(1)寫出曲線的極坐標(biāo)方程,并求與交點(diǎn)的極坐標(biāo);
(2)射線與曲線與分別交于點(diǎn)(異于原點(diǎn)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).
(1)寫出曲線的極坐標(biāo)方程,并求與交點(diǎn)的極坐標(biāo);
(2)射線與曲線與分別交于點(diǎn)(異于原點(diǎn)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,若,且的圖象相鄰的對(duì)稱軸間的距離不小于.
(1)求的取值范圍.
(2)若當(dāng)取最大值時(shí), ,且在中, 分別是角的對(duì)邊,其面積,求周長(zhǎng)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com