到定點(diǎn)(
7
,0)和定直線x=
16
7
7
的距離之比為
7
4
的動(dòng)點(diǎn)軌跡方程是( 。
A.
x2
9
+
y2
16
=1
B.
x2
16
+
y2
9
=1
C.
x2
8
+y2=1
D.x2+
y2
8
=1
設(shè)P(x,y)是軌跡上的任一點(diǎn),
由題意,得
(x-
7
)2+y2
|x-
16
7
7
|
=
7
4

化簡(jiǎn)得
x2
16
+
y2
9
=1
,
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下五個(gè)關(guān)于圓錐曲線的命題中:
①平面內(nèi)到定點(diǎn)A(1,0)和定直線l:x=2的距離之比為
1
2
的點(diǎn)的軌跡方程是
x2
4
+
y2
3
=1
;
②點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M點(diǎn)A的坐標(biāo)是A(3,6),則|PA|+|PM|的最小值是6;
③平面內(nèi)到兩定點(diǎn)距離之比等于常數(shù)λ(λ>0)的點(diǎn)的軌跡是圓;
④若動(dòng)點(diǎn)M(x,y)滿足
(x-1)2+(y+2)2
=|2x-y-4|
,則動(dòng)點(diǎn)M的軌跡是雙曲線;
⑤若過點(diǎn)C(1,1)的直線l交橢圓
x2
4
+
y2
3
=1
于不同的兩點(diǎn)A,B,且C是AB的中點(diǎn),則直線l的方程是3x+4y-7=0.
其中真命題的序號(hào)是
 
.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

到定點(diǎn)(
7
,0)和定直線x=
16
7
7
的距離之比為
7
4
的動(dòng)點(diǎn)軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江西省南昌市新建二中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

以下五個(gè)關(guān)于圓錐曲線的命題中:
①平面內(nèi)到定點(diǎn)A(1,0)和定直線l:x=2的距離之比為的點(diǎn)的軌跡方程是;
②點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M點(diǎn)A的坐標(biāo)是A(3,6),則|PA|+|PM|的最小值是6;
③平面內(nèi)到兩定點(diǎn)距離之比等于常數(shù)λ(λ>0)的點(diǎn)的軌跡是圓;
④若動(dòng)點(diǎn)M(x,y)滿足,則動(dòng)點(diǎn)M的軌跡是雙曲線;
⑤若過點(diǎn)C(1,1)的直線l交橢圓于不同的兩點(diǎn)A,B,且C是AB的中點(diǎn),則直線l的方程是3x+4y-7=0.
其中真命題的序號(hào)是    .(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年重點(diǎn)中學(xué)聯(lián)考一理) 以下四個(gè)關(guān)于圓錐曲線的命題中:

①平面內(nèi)到定點(diǎn)A(1,0)和定直線l:x=2的距離之比為的點(diǎn)的軌跡方程是:

②點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)Py軸上的射影是M,點(diǎn)A的坐標(biāo)是A(3,6),則

  |PA|+|PM|的最小值是6;

③平面內(nèi)到兩定點(diǎn)距離之比等于常數(shù)λ(λ>0)的點(diǎn)的軌跡是圓;

④若過點(diǎn)C(1,1)的直線l交橢圓于不同的兩點(diǎn)A、B,且CAB的中點(diǎn),則直線l的方程是3x+4y-7=0:

  其中真命題的序號(hào)是           (寫出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案