如圖,某校有一塊形如直角三角形ABC的空地,其中∠B為直角,AB長(zhǎng)40米,BC長(zhǎng)50米,現(xiàn)欲在此空地上建造一間健身房,其占地形狀為矩形,且B為矩形的一個(gè)頂點(diǎn),求該健身房的最大占地面積.

解:如圖,設(shè)矩形為EBFP,F(xiàn)P長(zhǎng)為x米,其中0<x<40,
健身房占地面積為y平方米.因?yàn)椤鰿FP∽△CBA,
,,求得BF=50-,
從而y=BF•FP=(50-)x
=-
=-
≤500.
當(dāng)且僅當(dāng)x=20時(shí),等號(hào)成立.
答:該健身房的最大占地面積為500平方米.
分析:設(shè)出矩形的邊FP的邊長(zhǎng),利用三角形相似求出矩形的寬,表示出矩形面積,利用二次函數(shù)的最值求解即可.
點(diǎn)評(píng):本題考查函數(shù)的實(shí)際應(yīng)用,表示出函數(shù)的表達(dá)式是解題的關(guān)鍵,考查分析問題解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)如圖,某校有一塊形如直角三角形ABC的空地,其中∠B為直角,AB長(zhǎng)40米,BC長(zhǎng)50米,現(xiàn)欲在此空地上建造一間健身房,其占地形狀為矩形,且B為矩形的一個(gè)頂點(diǎn),求該健身房的最大占地面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某校有一塊形如直角三角形的空地,其中為直角,長(zhǎng)米,長(zhǎng)米,現(xiàn)欲在此空地上建造一間健身房,其占地形狀為矩形,且為矩形的一個(gè)頂點(diǎn),求該健身房的最大占地面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某校有一塊形如直角三角形的空地,其中為直角,長(zhǎng)米, 長(zhǎng)米,現(xiàn)欲在此空地上建造一間健身房,其占地形狀為矩形,且為矩形的一個(gè)頂點(diǎn),求該健身房的最大占地面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市春季高考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某校有一塊形如直角三角形ABC的空地,其中∠B為直角,AB長(zhǎng)40米,BC長(zhǎng)50米,現(xiàn)欲在此空地上建造一間健身房,其占地形狀為矩形,且B為矩形的一個(gè)頂點(diǎn),求該健身房的最大占地面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案