對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1.

對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列T2(B);

又定義

設(shè)A0是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).

(Ⅰ)如果數(shù)列A0為5,3,2,寫出數(shù)列A1,A2;

(Ⅱ)對(duì)于每項(xiàng)均是正整數(shù)的有窮數(shù)列A,證明S(T1(A))=S(A);

(Ⅲ)證明:對(duì)于任意給定的每項(xiàng)均為正整數(shù)的有窮數(shù)列A0,存在正整數(shù)K,當(dāng)k≥K時(shí),S(Ak+1)=S(Ak).

答案:
解析:

  (Ⅰ)解:

  ,

  ;

  ,

  

  (Ⅱ)證明:設(shè)每項(xiàng)均是正整數(shù)的有窮數(shù)列,

  則,,,,,

  從而

  

  又,

  所以

  

  

  故

  (Ⅲ)證明:設(shè)是每項(xiàng)均為非負(fù)整數(shù)的數(shù)列

  當(dāng)存在,使得時(shí),交換數(shù)列的第項(xiàng)與第項(xiàng)得到數(shù)列,

  則

  當(dāng)存在,使得時(shí),若記數(shù)列,

  則

  所以

  從而對(duì)于任意給定的數(shù)列,由

  可知

  又由(Ⅱ)可知,所以

  即對(duì)于,要么有,要么有

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/1261/0020/952a12760a5b37132159be015296a571/C/Image294.gif" width=42 height=24>是大于2的整數(shù),所以經(jīng)過有限步后,必有

  即存在正整數(shù),當(dāng)時(shí),


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

21、對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1.
對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列T2(B);
又定義S(B)=2(b1+2b2+…+mbm)+b12+b22+…+bm2.設(shè)A0是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).
(Ⅰ)如果數(shù)列A0為5,3,2,寫出數(shù)列A1,A2;
(Ⅱ)對(duì)于每項(xiàng)均是正整數(shù)的有窮數(shù)列A,證明S(T1(A))=S(A);
(Ⅲ)證明:對(duì)于任意給定的每項(xiàng)均為正整數(shù)的有窮數(shù)列A0,存在正整數(shù)K,當(dāng)k≥K時(shí),S(Ak+1)=S(Ak).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•崇明縣二模)對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1;對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列T2(B);設(shè)A0是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).如果數(shù)列A0為4,2,1,則數(shù)列A1
A2為3,3,1
A2為3,3,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20.(本小題共13分)

對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列,定義變換,將數(shù)列變換成數(shù)列

對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列,定義變換,將數(shù)列各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列;

又定義

設(shè)是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令

(Ⅰ)如果數(shù)列為5,3,2,寫出數(shù)列

(Ⅱ)對(duì)于每項(xiàng)均是正整數(shù)的有窮數(shù)列,證明;

(Ⅲ)證明對(duì)于任意給定的每項(xiàng)均為正整數(shù)的有窮數(shù)列,存在正整數(shù),當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1A.:n,a1-1,a2-1,…,an-1.

對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列B:b1,b2, …,bm,定義變換T2,T2將數(shù)列B各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列T2B):又定義

SB)=2(b1+2b2+…+mbm)+b21+b22+…+b2m

設(shè)A0是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令Ak+1=T2(T1(Ak))(k=0,1,2, …)

(Ⅰ)如果數(shù)列A0為5,3,2,寫出數(shù)列A1,A2;

(Ⅱ)對(duì)于每項(xiàng)均是正整數(shù)的有窮數(shù)列A,證明ST1A.)=SA.;

(Ⅲ)證明:對(duì)于任意給定的每項(xiàng)均為正整數(shù)的有窮數(shù)列A0,存在正整數(shù)K,當(dāng)k≥K時(shí),S(Ak+1)=S(Ak).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市崇明縣高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1;對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列T2(B);設(shè)A是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).如果數(shù)列A為4,2,1,則數(shù)列A1   

查看答案和解析>>

同步練習(xí)冊答案