已知定義在R上奇函數(shù)f(x)在x≥0時的圖象如圖所示,
(1)補充完整f(x)在x≤0的函數(shù)圖象;
(2)寫出f(x)的單調(diào)區(qū)間;
(3)根據(jù)圖象寫出不等式xf(x)<0的解集.
分析:(1)因為f(x)是奇函數(shù)得函數(shù)圖象關(guān)于原點對稱,可畫出y軸左側(cè)的圖象,由此補出完整函數(shù)f(x)的圖象即可;(2)可從圖形直接觀察得到寫出f(x)的單調(diào)區(qū)間;
(3)利用兩因式異號相乘得負,得出f(x)的正負,由圖象可求出x的范圍得結(jié)果.
解答:解:(1)因為函數(shù)為奇函數(shù),故圖一定關(guān)于原點對稱,補出完整函數(shù)圖象如圖;
(2)單調(diào)增區(qū)間:[-1,1],[3,+∞),(-∞,-3];單調(diào)減區(qū)間:[-3,-1],[1,3]
(3)x>0時,f(x)<0,∴2<x<4,
x<0時,f(x)>0,∴-4<x<-2,
∴不等式解集為:(2,4)∪(-4,-2)
點評:本題考查分段函數(shù)求解析式、作圖,同時考查函數(shù)的函數(shù)的值域以及圖解不等式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、已知定義在R上奇函數(shù)f(x)滿足f(1+x)=f(1-x)且f(x)在區(qū)間[-1,1]上單調(diào)遞增,則函數(shù)f(x)在區(qū)間[1,3]上的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)已知定義在R上奇函數(shù)f(x)滿足①對任意x,都有f(x+3)=f(x)成立;②當x∈[0,
3
2
]
f(x)=
3
2
-|
3
2
-2x|
,則f(x)=
1
|x|
在[-4,4]上根的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上奇函數(shù)f(x)=ax3+bx2+cx+d(a≠0),
(1)若f(1)≠1,且當x∈[1,2]時,函數(shù)g(x)=
f(x)x
的值域為[-2,1]
①求函數(shù)f(x)的解析式;
②關(guān)于x的方程f(x)=3x+m有且只有三個實根,求m的取值范圍;
(2)若c=-3,f(x)+1≥0對于?x∈[-1,1]成立,求f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上奇函數(shù)f(x)=ax3+bx2+cx+d(a≠0),f(1)≠1;且當x∈[1,2]時,函數(shù)g(x)=
f(x)x
的值域為[-2,1].
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在x∈[1,+∞)上的單調(diào)性(不需寫出推理過程),并寫出f(x)在其定義域上的單調(diào)區(qū)間;
(3)討論關(guān)于x的方程f(x)-t=0(t∈R)的根的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案