已知直線l:kx-y-3k=0;圓M:x2+y2-8x-2y+9=0,
(1)求證:直線l與圓M必相交;
(2)當(dāng)圓M截l所得弦最長(zhǎng)時(shí),求k的值。
(1)證明見解析
(2) k=1。
(1)證明:直線l可化為:y=k(x-3),過定點(diǎn)A(3,0),又圓M:(x-4)2+(y-1)2=8而|AM|==<2,所以點(diǎn)A在圓M內(nèi),于是直線l與圓M必相交。
(2)要使圓M截l所得弦最長(zhǎng),則l過圓心M,把點(diǎn)(4,1)代入直線方程得k=1。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線與圓有公共點(diǎn),則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線y=x+m與曲線=x有兩個(gè)不同交點(diǎn),則實(shí)數(shù)m的取值范圍為(    )
A.(-,)B.(-,-1)
C.(-,1]D.[1,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題




(1)證明:不論為何值時(shí),直線和圓恒相交于兩點(diǎn);
(2)求直線被圓截得的弦長(zhǎng)最小時(shí)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知過點(diǎn)的直線被圓所截得的弦長(zhǎng)為
求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

截直線所得弦的垂直平分線方程是(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

k為任意實(shí)數(shù),直線(k+1)x-ky-1=0被圓(x-1)2+(y-1)2=4截得的弦長(zhǎng)為(  )
A.8B.4
C.2D.與k有關(guān)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點(diǎn)P(-2,-3)作圓C:(x-4)2+(y-2)2=9的兩條切線,切點(diǎn)分別為A、B.求:
(1)經(jīng)過圓心C,切點(diǎn)AB這三點(diǎn)的圓的方程;
(2)直線AB的方程;
(3)線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線是一個(gè)圓的平行切線,則圓的面積是(    ).
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案