10.“l(fā)n(x+2)<0”是“x<0”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)不等式的性質(zhì),利用充分條件和必要條件的定義進(jìn)行判斷即可得到結(jié)論.

解答 解:由ln(x+2)<0,得:0<x+2<1,解得:-2<x<-1,
故-2<x<-1是x<0的充分不必要條件,
故選:A.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的性質(zhì)是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.對(duì)于定義域?yàn)镈的函數(shù)y=f(x),如果存在區(qū)間[m,n]⊆D,其中m<n,同時(shí)滿(mǎn)足:①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是[m,n]時(shí),f(x)的值域也是[m,n].
則稱(chēng)函數(shù)f(x)是區(qū)間[m,n]上的“保值函數(shù)”,區(qū)間[m,n]稱(chēng)為“保值區(qū)間”.
(1)求證:函數(shù)g(x)=x2-2x不是定義域[0,1]上的“保值函數(shù)”.
(2)若函數(shù)f(x)=2+$\frac{1}{a}$-$\frac{1}{{a}^{2}x}$(a∈R,a≠0)是區(qū)間[m,n]上的“保值函數(shù)”,求a的取值范圍.
(3)對(duì)(2)中函數(shù)f(x),若不等式|a2f(x)|≤2x對(duì)x≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖所示,在邊長(zhǎng)為1的正方形OABC內(nèi)任取一點(diǎn)P,用A表示事件“點(diǎn)P恰好取自由曲線(xiàn)$y=\sqrt{x}$與直線(xiàn)x=1及x軸所圍成的曲邊梯形內(nèi)”,B表示事件“點(diǎn)P恰好取自陰影部分內(nèi)”,則P(B|A)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=$\frac{{e}^{x}}{x}-kx$(e為自然對(duì)數(shù)的底數(shù))有且只有一個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(0,2)B.(0,$\frac{{e}^{2}}{4}$)C.(0,e)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知A為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點(diǎn),B為點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn),F(xiàn)為橢圓的左焦點(diǎn),且AF⊥BF,若∠ABF∈[$\frac{π}{12}$,$\frac{π}{4}$],則該橢圓離心率的取值范圍為(  )
A.[0,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,1)C.[0,$\frac{\sqrt{6}}{3}$]D.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{lo{g}_{\frac{1}{3}}x,x>1}\end{array}\right.$,若對(duì)任意的x∈R,不等式f(x)≤$\frac{5}{4}$m-m2恒成立,則實(shí)數(shù)m的取值范圍為(  )
A.[-1,$\frac{1}{4}$]B.[$\frac{1}{4}$,1]C.[-2,$\frac{1}{4}$]D.[$\frac{1}{3}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合M={-1,0,1,2,3},N={x|x2-2x>0},則M∩N=( 。
A.{3}B.{2,3}C.{-1,3}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.給出下列等式:
$\sqrt{2}$=2cos$\frac{π}{4}$,
$\sqrt{2+\sqrt{2}}$=2cos$\frac{π}{8}$,
$\sqrt{2+\sqrt{2+\sqrt{2}}}$=2cos$\frac{π}{16}$

請(qǐng)從中歸納出第n(n∈N*)個(gè)等式:$\sqrt{2+…+\sqrt{2+\sqrt{2}}}$=2cos$\frac{π}{{2}^{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.命題“若x∈R,則x2+(a-1)x+1≥0恒成立”是真命題,則實(shí)數(shù)a的取值范圍為[-1,3].

查看答案和解析>>

同步練習(xí)冊(cè)答案