9.復數(shù)i(2-i)在復平面內所對應的點的坐標為(1,2).

分析 利用復數(shù)的運算法則、幾何意義即可得出.

解答 解:復數(shù)i(2-i)=2i+1在復平面內所對應的點的坐標為(1,2).
故答案為:(1,2).

點評 本題考查了復數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知點F2,P分別為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點與右支上的一點,O為坐標原點,若2$\overrightarrow{OM}=\overrightarrow{OP}+\overrightarrow{O{F_2}},|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,則該雙曲線的離心率為(  )
A.$2\sqrt{3}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=|3x-1|-2|x|+2.
(1)解不等式:f(x)<10;
(2)若對任意的實數(shù)x,f(x)-|x|≤a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)$f(x)=sin(ωx+\frac{π}{6})(ω>0)$的最小正周期為4π,則(  )
A.函數(shù)f(x)的圖象關于原點對稱
B.函數(shù)f(x)的圖象關于直線$x=\frac{π}{3}$對稱
C.函數(shù)f(x)圖象上的所有點向右平移$\frac{π}{3}$個單位長度后,所得的圖象關于原點對稱
D.函數(shù)f(x)在區(qū)間(0,π)上單調遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={x|x2-4<0},則∁RA=(  )
A.{x|x≤-2或x≥2}B.{x|x<-2或x>2}C.{x|-2<x<2}D.{x|-2≤x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在幾何體ABCDEF中,平面ADE⊥平面ABCD,四邊形ABCD為菱形,且∠DAB=60°,EA=ED=AB=2EF,EF∥AB,M為BC中點.
(Ⅰ)求證:FM∥平面BDE;
(Ⅱ)求直線CF與平面BDE所成角的正弦值;
(Ⅲ)在棱CF上是否存在點G,使BG⊥DE?若存在,求$\frac{CG}{CF}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知x,y∈R,那么“x>y”的充分必要條件是(  )
A.2x>2yB.lgx>lgyC.$\frac{1}{x}>\frac{1}{y}$D.x2>y2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設數(shù)列{an+1}是一個各項均為正數(shù)的等比數(shù)列,已知a3=7,a7=127.
(1)求的a1值;
(2)求數(shù)列{an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知實數(shù)4,m,9構成一個等比數(shù)列,則圓錐曲線$\frac{{x}^{2}}{m}$+y2=1的焦距為2$\sqrt{5}$或2$\sqrt{7}$.

查看答案和解析>>

同步練習冊答案