以橢圓
的長軸端點為焦點、以橢圓焦點為頂點的雙曲線方程為 ( )
試題分析:由橢圓方程可知所求雙曲線的焦點為
,頂點為
。則設(shè)雙曲線方程為
,所以
,則
。所以所求雙曲線方程為
。故A正確。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知焦點在
軸上的橢圓
過點
,且離心率為
,
為橢圓
的左頂點.
(1)求橢圓
的標準方程;
(2)已知過點
的直線
與橢圓
交于
,
兩點.
(。┤糁本
垂直于
軸,求
的大小;
(ⅱ)若直線
與
軸不垂直,是否存在直線
使得
為等腰三角形?如果存在,求出直線
的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
從橢圓
+
=1(a>b>0)上一點P向x軸作垂線,垂足恰為左焦點F
1,A是橢圓與x軸正半軸的交點,B是橢圓與y軸正半軸的交點,且AB∥OP(O是坐標原點),則該橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是直線
被橢圓
所截得的線段的中點,則直線
的方程是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)橢圓
(
)的左、右焦點為
,右頂點為
,上頂點為
.已知
.
(1)求橢圓的離心率;
(2)設(shè)
為橢圓上異于其頂點的一點,以線段
為直徑的圓經(jīng)過點
,經(jīng)過原點
的直線
與該圓相切,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
.
(1)求橢圓
的離心率;
(2)設(shè)
為原點,若點
在橢圓
上,點
在直線
上,且
,試判斷直線
與圓
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓與雙曲線
的焦點相同,且橢圓上任意一點到兩焦點的距離之和為
,那么橢圓的離心率等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
[2013·浙江高考]如圖,F(xiàn)
1,F(xiàn)
2是橢圓C
1:
+y
2=1與雙曲線C
2的公共焦點,A,B分別是C
1,C
2在第二、四象限的公共點.若四邊形AF
1BF
2為矩形,則C
2的離心率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)(2011•陜西)設(shè)橢圓C:
過點(0,4),離心率為
(Ⅰ)求C的方程;
(Ⅱ)求過點(3,0)且斜率為
的直線被C所截線段的中點坐標.
查看答案和解析>>