14.若實(shí)數(shù)k滿足0<k<9,則曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9-k}$=1與曲線$\frac{{x}^{2}}{25-k}$-$\frac{{y}^{2}}{9}$=1的( 。
A.離心率相等B.虛半軸長相等C.實(shí)半軸長相等D.焦距相等

分析 根據(jù)k的取值范圍,判斷曲線為對(duì)應(yīng)的雙曲線,以及a,b,c的大小關(guān)系即可得到結(jié)論.

解答 解:當(dāng)0<k<9,則0<9-k<9,16<25-k<25
曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9-k}$=1表示焦點(diǎn)在x軸上的雙曲線,其中a2=25,b2=9-k,c2=34-k,
曲線$\frac{{x}^{2}}{25-k}$-$\frac{{y}^{2}}{9}$=1表示焦點(diǎn)在x軸上的雙曲線,其中a2=25-k,b2=9,c2=34-k,
即兩個(gè)雙曲線的焦距相等,
故選:D.

點(diǎn)評(píng) 本題主要考查雙曲線的方程和性質(zhì),根據(jù)不等式的范圍判斷a,b,c是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在矩形ABCD中,AB=1,AD=a,PA⊥平面ABCD,且PA=1,E,F(xiàn)分別為AD,PA中點(diǎn),在BC上有且只有一個(gè)點(diǎn)Q,使得PQ⊥QD.
(1)求證:平面BEF∥平面PDQ;
(2)求二面角E-BF-Q的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列向量組中,能作為平面內(nèi)所有向量的基底的是( 。
A.$\overrightarrow{a}$=(0,0),$\overrightarrow$=(1,-2)B.$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(5,7)C.$\overrightarrow{a}$=(3,5),$\overrightarrow$=(6,10)D.$\overrightarrow{a}$=(2,-3),$\overrightarrow$=(4,-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知?jiǎng)訄A過定點(diǎn)A(4,0),且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;
(Ⅱ) 已知點(diǎn)B(-3,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知△ABC,AB=4,BC=3,AC=5,現(xiàn)以AB為軸旋轉(zhuǎn)一周,則所得幾何體的表面積( 。
A.24πB.21 πC.33πD.39 π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|(3-x)(x+1)>0},B={x|-2<x≤1},則A∩B=(  )
A.(-1,1]B.(-2,3]C.(-2,-1)D.(-2,1-)∪[1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=alnx-bx2(x>0),若函數(shù)y=f(x)在x=1處與直線y=-1相切.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)y=f(x)在$[{\frac{1}{e},e}]$上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知單位圓O與x軸正半軸相交于點(diǎn)M,點(diǎn)A,B在單位圓上,其中點(diǎn)A在第一象限,且∠AOB=$\frac{π}{2}$,記∠MOA=α,∠MOB=β.
(Ⅰ)若α=$\frac{π}{6}$,求點(diǎn)A,B的坐標(biāo);
(Ⅱ)若點(diǎn)A的坐標(biāo)為($\frac{4}{5}$,m),求sinα-sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在空間直角坐標(biāo)系中,點(diǎn)A(-1,2,0)關(guān)于平面yOz的對(duì)稱點(diǎn)坐標(biāo)為(1,2,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案