18.cos735°=( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

分析 利用誘導(dǎo)公式,兩角和與差的余弦函數(shù)公式解答.

解答 解:cos735°=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=$\frac{\sqrt{6}+\sqrt{2}}{4}$.
故選:D.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式,兩角和與差的三角函數(shù),考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若當(dāng)x∈(-∞,-1]時(shí),不等式(m2-m)4x-2x-1<0恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-2,3)B.(-3,3)C.(-2,2)D.(-3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=2ax3+3,g(x)=3x2+2,若關(guān)于x的方程f(x)=g(x)有唯一解x0,且x0∈(0,+∞),則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-1)B.(-l,0)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2cos2ωx+2$\sqrt{3}$sinωxcosωx+a的周期為π,
(1)求函數(shù)f(x)的單調(diào)區(qū)間
(2)若f(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上最大值與最小值之和為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知U={y|y=lnx,x>1},A={y|y=$\frac{1}{x}$,x>3},則∁UA=( 。
A.$(0,\frac{1}{3})$B.(0,+∞)C.[$\frac{1}{3},+∞$)D.(-∞,0]∪[$\frac{1}{3},+∞$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對(duì)函數(shù)$f(x)=x+\sqrt{1-{x^2}}$作x=h(t)的代換,則不改變函數(shù)f(x)值域的代換是( 。
A.h(t)=$sint,t∈[{0,\frac{π}{2}}]$B.h(t)=sint,t∈[0,π]
C.h(t)=sint,t∈[-$\frac{π}{2}$,$\frac{π}{2}$]D.h(t)=$\frac{1}{2}$sint,t∈[0,2π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合,A={小于9的正整數(shù)},B={x|3≤x≤6,且x∈Z}
求A∩B,A∪B,(∁ZA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知:命題P:函數(shù)y=logax在定義域上單調(diào)遞減;命題Q:不等式(a-2)x2+2(a-2)x-4<0對(duì)任意實(shí)數(shù)x恒成立;若“P或Q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=4t\\ y=4t+a\end{array}\right.({t為參數(shù)})({a∈R})$,圓C的極坐標(biāo)方程為ρ=4cosθ-4sinθ.
(1)將直線l的參數(shù)方程化為普通方程,以及將圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若圓C上有且僅有三個(gè)點(diǎn)到直線l的距離為$\sqrt{2}$,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案