如圖,已知正方體棱長(zhǎng)為2,、、分別是、和的中點(diǎn).
(1)證明:面;
(2)求二面角的余弦值.
(1)證明詳見解析;(2).
解析試題分析:先以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,然后標(biāo)明有效點(diǎn)的坐標(biāo),(1)寫出有效向量的坐標(biāo),利用向量的數(shù)量積為零即可證明,從而可得平面;(2)易知為平面的法向量,先計(jì)算,然后觀察二面角是銳角還是鈍角,最終確定二面角的余弦值.
試題解析:以為原點(diǎn)建立如圖空間直角坐標(biāo)系,正方體棱長(zhǎng)為2
則 2分
(1)則,
3分
∵
∴ 4分
∵
∴ 5分
又,, 6分
∴面 7分
(2)由(1)知為面的法向量 8分
∵面,為面的法向量 9分
設(shè)與夾角為,則 12分
由圖可知二面角的平面角為
∴二面角的余弦值為 14分.
考點(diǎn):1.空間向量在解決空間垂直上的應(yīng)用;2.空間向量在解決空間角中的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)求證:BE∥平面PDA;
(2)若N為線段PB的中點(diǎn),求證:NE⊥平面PDB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求證:BF∥平面ACE;
(2)求證:BF⊥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點(diǎn).
(1)求證:BC⊥平面PAC;
(2)設(shè)Q為PA的中點(diǎn),G為△AOC的重心,求證:QG∥平面PBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱,,底面為直角梯形,其中BC∥AD, AB⊥AD, ,O為AD中點(diǎn).
(1)求直線與平面所成角的余弦值;
(2)求點(diǎn)到平面的距離;
(3)線段上是否存在一點(diǎn),使得二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四邊形與都是邊長(zhǎng)為的正方形,點(diǎn)E是的中點(diǎn),平面
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐A—BDE的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在矩形中,點(diǎn)為邊上的點(diǎn),點(diǎn)為邊的中點(diǎn),,現(xiàn)將沿邊折至位置,且平面平面.
(1) 求證:平面平面;
(2) 求二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com