A. | $-\frac{3}{2}-\frac{1}{e}$ | B. | $-\frac{3}{2}-\frac{2}{e}$ | C. | $-\frac{3}{4}-\frac{1}{2e}$ | D. | $-1-\frac{1}{e}$ |
分析 依題意,可得2a≥[$\frac{{e}^{x}({x}^{3}+\frac{3}{2}{x}^{2}-6x+2)-x}{{e}^{x}}$]min(x≥-2),構(gòu)造函數(shù)g(x)=$\frac{{e}^{x}({x}^{3}+\frac{3}{2}{x}^{2}-6x+2)-x}{{e}^{x}}$=${x}^{3}+\frac{3}{2}{x}^{2}-6x+2$-$\frac{x}{{e}^{x}}$,利用導(dǎo)數(shù)法可求得g(x)的極小值g(1)=1+$\frac{3}{2}$-6+2-$\frac{1}{e}$=-$\frac{3}{2}$-$\frac{1}{e}$,也是最小值,從而可得答案.
解答 解:f(x)=${e^x}({{x^3}+\frac{3}{2}{x^2}-6x+2})-2a{e^x}$-x≤0在[-2,+∞)上有解
?2aex≥${e}^{x}({x}^{3}+\frac{3}{2}{x}^{2}-6x+2)$-x在[-2,+∞)上有解
?2a≥[$\frac{{e}^{x}({x}^{3}+\frac{3}{2}{x}^{2}-6x+2)-x}{{e}^{x}}$]min(x≥-2).
令g(x)=$\frac{{e}^{x}({x}^{3}+\frac{3}{2}{x}^{2}-6x+2)-x}{{e}^{x}}$=${x}^{3}+\frac{3}{2}{x}^{2}-6x+2$-$\frac{x}{{e}^{x}}$,
則g′(x)=3x2+3x-6-$\frac{1-x}{{e}^{x}}$=(x-1)(3x+6+$\frac{1}{{e}^{x}}$),
∵x∈[-2,+∞),
∴當(dāng)x∈[-2,1)時,g′(x)<0,g(x)在區(qū)間[-2,1)上單調(diào)遞減;
當(dāng)x∈(1,+∞)時g′(x)>0,g(x)在區(qū)間(1,+∞)上單調(diào)遞增;
∴當(dāng)x=1時,g(x)取得極小值g(1)=1+$\frac{3}{2}$-6+2-$\frac{1}{e}$=-$\frac{3}{2}$-$\frac{1}{e}$,也是最小值,
∴2a≥-$\frac{3}{2}$-$\frac{1}{e}$,
∴a≥$-\frac{3}{4}-\frac{1}{2e}$.
故選:C.
點評 本題考查函數(shù)恒成立問題,考查等價轉(zhuǎn)化思想,突出分離參數(shù)法、構(gòu)造法與導(dǎo)數(shù)法的綜合運用,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a5>0,則a2017<0 | B. | 若a6>0,則a2018<0 | ||
C. | 若a5>0,則S2017>0 | D. | 若a6>0,則S2018>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {x|x≤-2} | C. | {x|x<3} | D. | {x|-2≤x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{{4\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com