12.已知集合A={x|$\frac{{x}^{2}-4}{\sqrt{x}}$=0},則集合A的子集的個(gè)數(shù)為2個(gè).

分析 求出集合A中的元素,從而求出集合A的子集的個(gè)數(shù)即可.

解答 解:由$\frac{{x}^{2}-4}{\sqrt{x}}$=0,得:$\left\{\begin{array}{l}{x>0}\\{{x}^{2}-4=0}\end{array}\right.$,
解得:x=2,
故A={2},
故A的子集為∅,{2},共2個(gè),
故答案為:2個(gè).

點(diǎn)評 本題考查解方程問題,考查了集合的子集的個(gè)數(shù),若集合A有n個(gè)元素,則A的子集共有2n個(gè),本題是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.給出下列命題:
(1)命題“在△ABC中,若A=30°,則sinA=$\frac{1}{2}$”的逆否命題為“在△ABC中,若sinA≠$\frac{1}{2}$則A≠30°”
(2)若p∧q為假命題,則p,q均為假命題
(3)?x∈R,sin2x+cos2x=1的否定為真命題
(4)已知命題p:函數(shù)y=ax-1+2(a>0且a≠1)的圖象恒過一定點(diǎn)A,則點(diǎn)A的坐標(biāo)為(1,2),
其中正確命題的序號為(1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(9,x),$\overrightarrow{c}$=(4,y),且$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow{a}$⊥$\overrightarrow{c}$
(1)求$\overrightarrow$與$\overrightarrow{c}$
(2)若$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$,求向量$\overrightarrow{m}$、$\overrightarrow{n}$的夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)A是三角形的一個(gè)內(nèi)角且cos(π+A)=$\frac{{\sqrt{3}}}{2}$,那么cos($\frac{π}{2}$+A)的值是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列2,$\frac{5}{3}$,$\frac{3}{2}$,$\frac{7}{5}$,$\frac{4}{3}$,…,則$\frac{17}{15}$是該數(shù)列中的第14項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}的通項(xiàng)公式為an=-2n+p,數(shù)列{bn}的通項(xiàng)公式為bn=2n-4,設(shè)cn=$\left\{{\begin{array}{l}{a_n}&{{a_n}≥{b_n}}\\{{b_n}}&{{a_n}<{b_n}}\end{array}}$,若在數(shù)列{cn}中c6<cn(n∈N*,n≠6),則p的取值范圍( 。
A.(11,25)B.(12,22)C.(12,17)D.(14,20)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}滿足a1=1,a2=4,a3=9,an=an-1+an-2-an-3(n=4,5,…)則S2n=8n2-3n.(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正實(shí)數(shù)a,b滿足$\frac{2}{a+2}$+$\frac{1}{a+2b}$=1,則a+b的取值范圍是[$\sqrt{2}$+$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若$\overrightarrow{a}$與$\overrightarrow$是共線向量,$\overrightarrow$與$\overrightarrow{c}$是共線向量,則$\overrightarrow{a}$與$\overrightarrow{c}$的關(guān)系是③(填序號)①共線;②不共線;③以上二者皆可能.

查看答案和解析>>

同步練習(xí)冊答案