分析 利用誘導公式、根據(jù)sinC+sin(A-B)=3sin2B求得sinA=3sinB,即a=3b,再利用余弦定理求得b的值,可得a的值,從而求得S△ABC=$\frac{1}{2}$ab•sinC 的值.
解答 解:非直角△ABC中,∵c=1,又$C=\frac{π}{3}$,若sinC+sin(A-B)=3sin2B,
則 sin(B+A)+sin(A-B)=6sinBcosB,
∴2sinAcosB=6sinBcosB,故有sinA=3sinB,a=3b.
由余弦定理知c2=a2+b2-2abcosC,代入3b=a,c=1整理可得b2=$\frac{1}{7}$,b=$\frac{\sqrt{7}}{7}$,a=$\frac{3\sqrt{7}}{7}$
∴S△ABC=$\frac{1}{2}$ab•sinC=$\frac{1}{2}$•$\frac{3\sqrt{7}}{7}$•$\frac{\sqrt{7}}{7}$•$\frac{\sqrt{3}}{2}$=$\frac{{3\sqrt{3}}}{28}$,
故答案為:$\frac{{3\sqrt{3}}}{28}$.
點評 本題主要考察了正弦定理、余弦定理和三角形面積公式、誘導公式的綜合應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
男性 | 女性 | 總計 | |
讀營養(yǎng)說明 | 40 | 20 | 60 |
不讀營養(yǎng)說明 | 20 | 20 | 40 |
總計 | 60 | 40 | 100 |
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{33}{65}$或$\frac{63}{65}$ | B. | $\frac{63}{65}$ | C. | $\frac{33}{65}$ | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要 | B. | 充分不必要 | ||
C. | 必要不充分 | D. | 既不充分也不必要 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com