為豐富高三學(xué)生的課余生活,提升班級的凝聚力,某校高三年級6個(gè)班(含甲、乙)舉行唱歌比賽.比賽通過隨機(jī)抽簽方式?jīng)Q定出場順序.
求:(1)甲、乙兩班恰好在前兩位出場的概率;
(2)比賽中甲、乙兩班之間的班級數(shù)記為,求的分布列和數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某超市為了解顧客的購物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次購物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | 30 | 25 | 10 | ||
結(jié)算時(shí)間(分鐘/人) | 1 | 1.5 | 2 | 2.5 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
“中國式過馬路”存在很大的交通安全隱患.某調(diào)
查機(jī)構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路
人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
| 男性 | 女性 | 合計(jì) |
反感 | 10 | | |
不反感 | | 8 | |
合計(jì) | | | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某部門對當(dāng)?shù)爻青l(xiāng)居民進(jìn)行了主題為“你幸福嗎?”的幸福指數(shù)問卷調(diào)査,并在已被問卷調(diào)查的居民中隨機(jī)抽選部分居民參加“幸福職業(yè)”或“幸福愿景”的座談會(huì),被邀請的居民只能選擇其中一場座談會(huì)參加.已知A小區(qū)有1人,B小區(qū)有3人收到邀請并將參加一場座談會(huì),若A小區(qū)已經(jīng)收到邀請的人選擇參加“幸福愿景”座談會(huì)的概率是, B小區(qū)已經(jīng)收到邀請的人選擇參加“幸福愿景”座談會(huì)的概率是.
(Ⅰ)求A、B兩個(gè)小區(qū)已收到邀請的人選擇“幸福愿景”座談會(huì)的人數(shù)相等的概率;
(Ⅱ)在參加“幸福愿景”座談會(huì)的人中,記A、B兩個(gè)小區(qū)參會(huì)人數(shù)的和為,試求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某班同學(xué)利用寒假在5個(gè)居民小區(qū)內(nèi)選擇兩個(gè)小區(qū)逐戶進(jìn)行一次“低碳生活習(xí)慣”的調(diào)查,以計(jì)算每戶的碳月排放量。若月排放量符合低碳標(biāo)準(zhǔn)的稱為“低碳族”,否則稱為“非低碳族”。若小區(qū)內(nèi)有至少75%的住戶屬于“低碳族”,則稱這個(gè)小區(qū)為“低碳小區(qū)”,否則稱為“非低碳小區(qū)”。已知備選的5個(gè)居民小區(qū)中有三個(gè)非低碳小區(qū),兩個(gè)低碳小區(qū)。
(I)求所選的兩個(gè)小區(qū)恰有一個(gè)為“非低碳小區(qū)”的概率;
(Ⅱ)假定選擇的“非低碳小區(qū)”為小區(qū),調(diào)查顯示其“低碳族”的比例為,數(shù)據(jù)如圖1所示,經(jīng)過同學(xué)們的大力宣傳,三個(gè)月后,又進(jìn)行了一次調(diào)查,數(shù)據(jù)如圖2所示,問這時(shí)小區(qū)是否達(dá)到“低碳小區(qū)”的標(biāo)準(zhǔn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某市為了推動(dòng)全民健身運(yùn)動(dòng)在全市的廣泛開展,該市電視臺開辦了健身競技類欄目《健身大闖關(guān)》,規(guī)定參賽者單人闖關(guān),參賽者之間相互沒有影響,通過關(guān)卡者即可獲獎(jiǎng)。現(xiàn)有甲、乙、丙人參加當(dāng)天的闖關(guān)比賽,已知甲獲獎(jiǎng)的概率為,乙獲獎(jiǎng)的概率為,丙獲獎(jiǎng)而甲沒有獲獎(jiǎng)的概率為。
(Ⅰ)求三人中恰有一人獲獎(jiǎng)的概率;
(Ⅱ)求三人中至少有兩人獲獎(jiǎng)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某高校在2011年的自主招生考試成績中隨機(jī)抽取 100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下所示.
(1)請先求出頻率分布表中①,②位置相應(yīng)的數(shù)據(jù),再完成下列頻率分布直方圖;并確定中位數(shù)。(結(jié)果保留2位小數(shù))
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的條件下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生接受考官進(jìn)行面試,求第4組至少有一名學(xué)生被考官A面試的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某種家用電器每臺的銷售利潤與該電器的無故障時(shí)間(單位:年)有關(guān),若,則銷售利潤為0元;若,則銷售利潤為100元,若,則銷售利潤為200元.設(shè)每臺該種電器的無故障使用時(shí)間,,這三種情況發(fā)生的概率分別為,又知為方程的兩根,且.
(1)求的值;
(2)記表示銷售兩臺這種家用電器的銷售利潤總和,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在一次購物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張獎(jiǎng)券中有一等獎(jiǎng)卷1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)卷3張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒有獎(jiǎng)。某顧客從這10張中任抽2張,求:(1)該顧客中獎(jiǎng)的概率;(2)該顧客獲得的獎(jiǎng)品總價(jià)值X(元)的分布列和數(shù)學(xué)期望。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com