設(shè)f(x)=sin x,f1(x)=f′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,則f2010(x)=   
【答案】分析:由題意首先求出f1(x)、f2(x)、f3(x)、f4(x)、f5(x)、觀察所求結(jié)果,發(fā)現(xiàn)結(jié)果成周期性出現(xiàn).利用周期性求f2010(x)的值即可.
解答:解:∵f1(x)=(sinx)′=cosx,
f2(x)=(cosx)′=-sinx,
f3(x)=(-sinx)′=-cosx,
f4(x)=(-cosx)′=sinx,
f5(x)=(sinx)′=f1(x),f6(x)=f2(x),.
∴fn+4(x)=fn(x),即周期T為4.
∴f2010(x)=f2(x)=-sinx.
故答案為:-sinx
點評:本題考查三角函數(shù)求導(dǎo)、函數(shù)周期性的應(yīng)用,考查觀察、歸納方法的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)求函數(shù)y=
log2
1
sinx
-1
的定義域.

(2)設(shè)f(x)=sin(cosx),(0≤x≤π),求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是( 。
A、設(shè)f(x)=sin(2x+
π
3
),則?x∈(-
π
3
π
6
)
,必有f(x)<f(x+0.1)
B、?x0∈R.便得
1
2
sinx0+
3
2
cosx0>1
C、設(shè)f(x)=cos(x+
π
3
),則函數(shù)y=f(x+
π
6
)是奇函數(shù)
D、設(shè)f(x)=2sin2x,則f(x+
π
3
)=2sin(2x+
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=sin(x-sinx),x∈R.關(guān)于f(x)有以下結(jié)論:
①f(x)是奇函數(shù);  
②f(x)的值域是[0,1];  
③f(x)是周期函數(shù);
④x=π是函數(shù)y=f(x)圖象的一條對稱軸;  
⑤f(x)在[0,π]上是增函數(shù).
其中正確結(jié)論的序號是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•武漢模擬)設(shè)f(x)=sinπx是[0,1]上的函數(shù),且定義f1(x)=f(x),…,fn(x)=f(fn-1(x)),n∈N*,則滿足fn(x)=x,x∈[0,1]的x的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淮北二模)設(shè)f(x)=sin(2x+φ),若f(x)≤f(
π
6
)對一切x∈R恒成立,則:
①f(-
π
12
)=0;
②f(x)的圖象關(guān)于點(
12
,0)對稱;
③f(x)既不是奇函數(shù)也不是偶函數(shù);
④f(x)的單調(diào)遞增區(qū)間是[kπ+
π
6
,kπ+
3
](k∈Z)
以上結(jié)論正確的是
①②③
①②③
(寫出所有正確結(jié)論的編號).

查看答案和解析>>

同步練習(xí)冊答案