(1)若a=2,求出A中其他所有元素.
(2)0是不是集合A中的元素?請你設計一個實數(shù)a∈A,再求出A中的所有元素.
(3)根據(1)(2),你能得出什么結論?請證明你的猜想(給出一條即可).
解析:(1)由2∈A,得=-3∈A.
又由-3∈A,得∈A.
再由-∈A,得∈A.
而∈A時,=2∈A.
故A中元素為2,-3,-,.
(2)0不是A的元素.若0∈A,則=1∈A,而當1∈A時,不存在,故0不是A的元素.
取a=3,可得A={3,-2,-}.
(3)猜想:①A中沒有元素-1,0,1;
②A中有4個元素,且每兩個互為負倒數(shù).
證明:①由上題,0、1A,若0∈A,則由=0,得a=-1.
而當=-1時,a不存在,故-1A,A中不可能有元素-1,0,1.
②設a1∈A,則a1∈Aa2=∈Aa3==-∈Aa4==∈Aa5==a1∈A.
又由集合元素的互異性知,A中最多只有4個元素:a1,a2,a3,a4,且a1a3=-1,a2a4=-1,顯然a1≠a3,a2≠a4.
若a1=a2,即a1=,得a12+1=0,
此方程無解;同理,若a1=a4,即a1=,此方程也無實數(shù)解.
故a1≠a2,a1≠a4.∴A中有4個元素.
科目:高中數(shù)學 來源: 題型:
1+a | 1-a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1+a | 1-a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1+a | 1-a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1+a | 1-a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1+a | 1-a |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com