精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)
如圖所示,平面PAD⊥平面ABCDABCD為正方形,PAAD,且PA=AD=2,EF,G分別是線段PAPD,CD的中點。
(1)求證:BC//平面EFG;
(2)求三棱錐EAFG的體積。

(1)證明見解析。
(2)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知四棱錐的底面是矩形,側棱長相等,棱錐的高為4,其俯視圖如圖所示.
(1)作出此四棱錐的主視圖和側視圖,并在圖中標出相關的數據;
(2)求該四棱錐的側面積

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)
如圖1所示,在平行六面體ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。(1)求證:頂點A1在底面ABCD上的射影O在∠BAD的平分線上;
(2)求這個平行六面體的體積。

圖1                                      

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,FD垂直于矩形ABCD所在平面,CE//DF, ∠DEF=900。
(1)求證:BE//平面ADF;
(2)若矩形ABCD的一個邊AB="3," 另一邊BC=2,EF=2,求幾何體ABCDEF的體積。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題共13分)
如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=
BAD=90°,AB中點,FPC中點.
(I)求證:PEBC
(II)求二面角CPEA的余弦值;
(III)若四棱錐PABCD的體積為4,求AF的長.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

M.N分別為正方體中棱BC和棱CC1的中點,則異面直線AC和MN所成的角為 (   )

A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

邊長為的正方形沿對角線折成的二面角,則的長為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

設m,n是兩條不同的直線,、是三個不同的平面,給出下列命題,正確的是(  ).

A.若,,則
B.若,,則
C.若,,則
D.若,,,則

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知平面和直線,給出條件:①;②;③;④;⑤.為使,應選擇下面四個選項中的(   )

A.③⑤B.①⑤C.①④D.②⑤

查看答案和解析>>

同步練習冊答案