3.已知平行四邊形ABCD的三個(gè)頂點(diǎn)A(2,1),B(3,2),D(-1,4),且F為AB中點(diǎn),則$\overrightarrow{CF}$=( 。
A.($\frac{5}{2}$,-$\frac{7}{2}$)B.($\frac{5}{2}$,$\frac{7}{2}$)C.($\frac{3}{2}$,-$\frac{7}{2}$)D.($\frac{3}{2}$,$\frac{7}{2}$)

分析 由中點(diǎn)坐標(biāo)公式可得:F$(\frac{5}{2},\frac{3}{2})$.利用$\overrightarrow{AB}=\overrightarrow{DC}$,可得$\overrightarrow{OC}$=$\overrightarrow{OD}$+$\overrightarrow{OB}-\overrightarrow{OA}$,可得$\overrightarrow{CF}$=$\overrightarrow{OF}-\overrightarrow{OC}$.

解答 解:由中點(diǎn)坐標(biāo)公式可得:F$(\frac{5}{2},\frac{3}{2})$.
∵$\overrightarrow{AB}=\overrightarrow{DC}$,∴$\overrightarrow{OC}$=$\overrightarrow{OD}$+$\overrightarrow{OB}-\overrightarrow{OA}$=(-1,4)+(3,2)-(2,1)=(0,5),
∴$\overrightarrow{CF}$=$\overrightarrow{OF}-\overrightarrow{OC}$=$(\frac{5}{2},-\frac{7}{2})$.
故選:A.

點(diǎn)評(píng) 本題考查了斜率坐標(biāo)運(yùn)算性質(zhì)、向量相等、中點(diǎn)坐標(biāo)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)$f(x)=ln(x-1)+\sqrt{2-x}$的定義域?yàn)椋?,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等差數(shù)列{an}中,a3=0,a7-2a4=-1,則公差d等于(  )
A.-2B.$\frac{1}{2}$C.2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.有6本不同的書分給四人,每人至少一本,則有1560種不同的分配方案.(數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份2007200820092010201120122013
年份代號(hào)t1234567
人均純收入y2.93.33.64.44.85.25.9
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.
可用公式:$\widehat$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n(\overline x{)^2}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{({x_i}-\overline x{)^2}}}}$,$\widehat{a}$=$\overline y$-$\widehat$$\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖是一個(gè)算法流程圖,則輸出的n的值是6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.6個(gè)電子產(chǎn)品中有2個(gè)次品,4個(gè)合格品,每次從中任取一個(gè)測(cè)試,測(cè)試完后不放回,直到兩個(gè)次品都找到為止,那么測(cè)試次數(shù)X的均值為( 。
A.$\frac{17}{15}$B.$\frac{11}{15}$C.$\frac{5}{3}$D.$\frac{64}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè),如圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),(104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是( 。
A.90B.75C.60D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)y=f(x)對(duì)x∈R滿足f(x+2)=f(x),且x∈[-1,1]時(shí),f(x)=1-x2.設(shè)g(x)=$\left\{\begin{array}{l}{lg|x|,x≠0}\\{1,x=0}\end{array}\right.$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,10]內(nèi)零點(diǎn)的個(gè)數(shù)為(  )
A.8B.10C.12D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案