對于給定數(shù)列{cn},如果存在實(shí)常數(shù)p,q使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“k類數(shù)列”.

(Ⅰ)若an=2n,bn=3·2n,n∈N*,數(shù)列{an}、{bn}是否為“k類數(shù)列”?若是,指出它對應(yīng)的實(shí)常數(shù)p,q,若不是,請說明理由;

(Ⅱ)證明:若數(shù)列{an}是“k類數(shù)列”,則數(shù)列{an+an+1}也是“k類數(shù)列”;

(Ⅲ)若數(shù)列{an}滿足a1=2,an+an+1=3t·2n(n∈N*),t為常數(shù).求數(shù)列{an}前2012項(xiàng)的和.并判斷{an}是否為“k類數(shù)列”,說明理由.

答案:
解析:

  解:(Ⅰ)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/5431/0020/fcd8682bfb08492c890ee0ffb6bdd524/C/Image159.gif" width=68 height=24>則有

  故數(shù)列是“類數(shù)列”,對應(yīng)的實(shí)常數(shù)分別為;1分

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/5431/0020/fcd8682bfb08492c890ee0ffb6bdd524/C/Image165.gif" width=62 height=25>,則有,

  故數(shù)列是“類數(shù)列”,對應(yīng)的實(shí)常數(shù)分別為;3分

  (Ⅱ)證明:若數(shù)列是“類數(shù)列”,則存在實(shí)常數(shù)

  使得對于任意都成立,

  且有對于任意都成立,

  因此對于任意都成立,

  故數(shù)列也是“類數(shù)列”.

  對應(yīng)的實(shí)常數(shù)分別為.6分

  (Ⅲ)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/5431/0020/fcd8682bfb08492c890ee0ffb6bdd524/C/Image175.gif" width=165 height=25>則有,,

  故數(shù)列前2012項(xiàng)的和

  

  ;9分

  若數(shù)列是“類數(shù)列”,則存在實(shí)常數(shù)

  使得對于任意都成立,

  且有對于任意都成立,

  因此對于任意都成立,

  而,且,

  則有對于任意都成立,可以得到

  ,

  當(dāng)時,,,經(jīng)檢驗(yàn)滿足條件.

  當(dāng)時,,經(jīng)檢驗(yàn)滿足條件.

  因此當(dāng)且僅當(dāng)時,數(shù)列是“類數(shù)列”.

  對應(yīng)的實(shí)常數(shù)分別為;13分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于給定數(shù)列{cn},如果存在實(shí)常數(shù)p,q使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“M類數(shù)列”.
(1)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“M類數(shù)列”?若是,指出它對應(yīng)的實(shí)常數(shù)p,q,若不是,請說明理由;
(2)證明:若數(shù)列{an}是“M類數(shù)列”,則數(shù)列{an+an+1}也是“M類數(shù)列”;
(3)若數(shù)列{an}滿足a1=2,an+an+1=3t•2n(n∈N*),t為常數(shù).求數(shù)列{an}前2009項(xiàng)的和.并判斷{an}是否為“M類數(shù)列”,說明理由;
(4)根據(jù)對(2)(3)問題的研究,對數(shù)列{an}的相鄰兩項(xiàng)an、an+1,提出一個條件或結(jié)論與“M類數(shù)列”概念相關(guān)的真命題,并探究其逆命題的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、對于給定數(shù)列{cn},如果存在實(shí)常數(shù)p,q,使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“M類數(shù)列”.
(I)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“M類數(shù)列”?
若是,指出它對應(yīng)的實(shí)常數(shù)p&,q,若不是,請說明理由;
(II)若數(shù)列{an}滿足a1=2,an+an+1=3t•2n(n∈N*),t為常數(shù).
(1)求數(shù)列{an}前2009項(xiàng)的和;
(2)是否存在實(shí)數(shù)t,使得數(shù)列{an}是“M類數(shù)列”,如果存在,求出t;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于給定數(shù)列{cn},如果存在實(shí)常數(shù)p,q使得cn+1=pcn+q對于任意n∈R*都成立,我們稱數(shù)列{cn}是“K類數(shù)列”.
(Ⅰ)若an=2n,bn=3•2n,n∈N*,數(shù)列{an},{bn}是否為“K類數(shù)列”?若是,指出它對應(yīng)的實(shí)常數(shù)p,q,若不是,請說明理由;
(Ⅱ)證明:若數(shù)列{cn}是“K類數(shù)列”,則數(shù)列{an+an+1}也是“K類數(shù)列”;
(Ⅲ)若數(shù)列an滿足a1=2,an+an+1=3t•2n(n∈N*),t為常數(shù).求數(shù)列{an}前2012項(xiàng)的和.并判斷{an}是否為“K類數(shù)列”,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•湖北模擬)對于給定數(shù)列{cn},如果存在實(shí)常數(shù)p、q,使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“M類數(shù)列”;
(1)若an=2n,數(shù)列{an}是否為“M類數(shù)列”?若是,指出它對應(yīng)的實(shí)常數(shù)p、q,若不是,請說明理由;
(2)數(shù)列{an}滿足a1=2,an+an+1=3•2n(n∈N*),若數(shù)列{an}是“M類數(shù)列”,求數(shù)列{an}的通項(xiàng)公式;
(3)記數(shù)列{an}的前n項(xiàng)之和為Sn,求證:
4
S1S2
+
4
S2S3
+
4
S3S4
+…+
4
SnSn+1
19
42
(n≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)對于給定數(shù)列{cn},如果存在實(shí)常數(shù)p,q使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“T數(shù)列”.
(Ⅰ)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“T數(shù)列”?若是,指出它對應(yīng)的實(shí)常數(shù)p,q,若不是,請說明理由;
(Ⅱ)證明:若數(shù)列{an}是“T數(shù)列”,則數(shù)列{an+an+1}也是“T數(shù)列”;
(Ⅲ)若數(shù)列{an}滿足a1=2,an+an+1=3t•2n(n∈N*),t為常數(shù).求數(shù)列{an}前2013項(xiàng)的和.

查看答案和解析>>

同步練習(xí)冊答案