設(shè)直線與雙曲線的兩條漸近線分別交于,若滿足,則雙曲線的離心率是         .

試題分析:由雙曲線的方程數(shù)知,其漸近線方程為,分別與直線聯(lián)立方程組,解得,,由,設(shè)的中點(diǎn)為
,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053645259379.png" style="vertical-align:middle;" />與直線垂直,
所以,即,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053645368531.png" style="vertical-align:middle;" />,所以.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的方程為,直線的方程為,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在拋物線上.
(1)求拋物線的方程;
(2)已知,點(diǎn)是拋物線的焦點(diǎn),是拋物線上的動(dòng)點(diǎn),求的最小值及此時(shí)點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)、是拋物線上的動(dòng)點(diǎn),點(diǎn)是拋物線與軸正半軸交點(diǎn),是以為直角頂點(diǎn)的直角三角形.試探究直線是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線y=2px2(p≠0)的焦點(diǎn)坐標(biāo)為( 。
A.(0,p)B.(0,
1
4p
C.(0,
1
8p
D.(0,±
1
8p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,等腰梯形ABCD中,線段Ab的中點(diǎn)O是拋物線的頂點(diǎn),DA、AB、BC分別與拋物線切于點(diǎn)M、O、N.等腰梯形的高是3,直線CD與拋物線相交于E、F兩點(diǎn),線段EF的長(zhǎng)是4.
(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拋物線的方程;
(Ⅱ)求等腰梯形ABCD的面積的最小值,并確定此時(shí)M、N的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)橢圓的左右焦點(diǎn)為,作軸的垂線與交于兩點(diǎn),軸交于點(diǎn),若,則橢圓的離心率等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是拋物線的焦點(diǎn),點(diǎn),在該拋物線上且位于軸的兩側(cè),(其中為坐標(biāo)原點(diǎn)),則面積之和的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),分別是橢圓的左、右焦點(diǎn),過點(diǎn)的直線交橢圓兩點(diǎn),
(1)若的周長(zhǎng)為16,求;
(2)若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)任意非零實(shí)數(shù),定義的算法原理如右側(cè)程序框圖所示.設(shè)為函數(shù)的最大值,為雙曲線的離心率,則計(jì)算機(jī)執(zhí)行該運(yùn)算后輸出的結(jié)果是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓C:的左、右頂點(diǎn)分別為A1、A2,點(diǎn)P在C上且直線PA2斜率的取值范圍是[﹣2,﹣1],那么直線PA1斜率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案