3.若集合A={1,2},則集合A的所有子集個數(shù)是(  )
A.1B.2C.3D.4

分析 根據(jù)n元集合有2n個子集,得到答案.

解答 解:集合A={1,2},
則集合A的所有子集個數(shù)是2n=4個,
故選:D.

點評 本題考查的知識點是子集與真子集,熟練掌握n元集合有2n個子集,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)y=f(x)滿足f(2+x)+f(2-x)=0,g(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+4,x>2}\\{-{x}^{2}+4x-4,x<2}\end{array}\right.$,若曲線y=f(x)與y=g(x)交于A1(x1,y1),A2(x2,y2),…,An(xn,yn),則$\sum_{i=1}^{n}$(xi+yi)等于( 。
A.4nB.2nC.nD.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=cos($\frac{1}{3}$x-φ),(0≤φ≤π)是R上的奇函數(shù),則φ的值是( 。
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-ax+$\frac{1}{2x}$(a∈R).
(1)當(dāng)a=-$\frac{3}{2}$時,求函數(shù)f(x)的單調(diào)區(qū)間和極值.
(2)若g(x)=f(x)+a(x-1)有兩個零點x1,x2,且x1<x2,求證:x1+x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.用數(shù)學(xué)歸納法證明不等式“$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}>\frac{13}{24}(n>2)$”時的過程中,由n=k到n=k+1,(k>2)時,不等式的左邊(  )
A.增加了一項$\frac{1}{2(k+1)}$
B.增加了兩項$\frac{1}{2k+1}+\frac{1}{2(k+1)}$
C.增加了一項$\frac{1}{2(k+1)}$,又減少了一項$\frac{1}{k+1}$
D.增加了兩項$\frac{1}{2k+1}+\frac{1}{2(k+1)}$,又減少了一項$\frac{1}{k+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=2sin(ωx+φ)-1(ω>0,|φ|<π)的一個零點是$x=\frac{π}{3}$,$x=-\frac{π}{6}$是y=f(x)的圖象的一條對稱軸,則ω取最小值時,f(x)的單調(diào)增區(qū)間是(  )
A.$[{-\frac{7}{3}π+3kπ,-\frac{1}{6}π+3kπ}],k∈Z$B.$[{-\frac{5}{3}π+3kπ,-\frac{1}{6}π+3kπ}],k∈Z$
C.$[{-\frac{2}{3}π+2kπ,-\frac{1}{6}π+2kπ}],k∈Z$D.$[{-\frac{1}{3}π+2kπ,-\frac{1}{6}π+2kπ}],k∈Z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)$f(x)=(\sqrt{3}sin\frac{x}{2}+cos\frac{x}{2})sin(\frac{x}{2}+\frac{π}{2})-\frac{1}{2}$.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,已知$f(A+\frac{π}{3})=-\frac{1}{2}$,$a=\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.從4款甲型和5款乙型智能手機(jī)中任取3款,其中至少要甲乙型號各一款,則不同的取法共有(  )
A.140種B.80種C.70種D.35種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.我國古代數(shù)學(xué)家劉徽是公元三世紀(jì)世界上最杰出的數(shù)學(xué)家,他在《九章算術(shù)圓田術(shù)》注重,用割圓術(shù)證明了圓面積的精確公式,并給出了計算圓周率的科學(xué)方法,所謂“割圓術(shù)”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的周長無限接近圓的周長,進(jìn)而求得較為精確的圓周率(圓周率指周長與該圓直徑的比率).劉徽計算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑R,此時圓內(nèi)接正六邊形的周長為6R,此時若將圓內(nèi)接正六邊形的周長等同于圓的周長,可得圓周率為3,當(dāng)正二十四邊形內(nèi)接于圓時,按照上述算法,可得圓周率為3.12(參考數(shù)據(jù):cos15°≈0.966,$\sqrt{0.068}$≈0.26)

查看答案和解析>>

同步練習(xí)冊答案