13.某班級共有40人,選擇A興趣班的占70%,選擇B興趣班的占60%,有x人既選擇A又選擇B,則x的范圍為[12,24].

分析 先求出選擇A興趣班的有28人,選擇B興趣班的占24人,根據(jù)每人至少選則一個興趣班和沒有限制條件即可求出x的范圍.

解答 解:班級共有40人,選擇A興趣班的占70%,選擇B興趣班的占60%,
則選擇A興趣班的有28人,選擇B興趣班的占24人,
若每人至少選則一個興趣班,則既選擇A又選擇B的有28+24-40=12人,
若沒有限制,則既選擇A又選擇B的有24人,
故x的范圍為為[12,24],
故答案為:[12,24]

點評 本題考查了集合在實際生活中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.設數(shù)列{an}的前n項為Sn,點$(n,\frac{S_n}{n}),\;(n∈{N^*})$均在函數(shù)$y=\frac{1}{2}x+\frac{1}{2}$的圖象上.
(1)求數(shù)列{an}的通項公式.
(2)設${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn為數(shù)列{bn}的前n項和,求使得Tn<$\frac{m}{20}$對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知sinα=$\frac{3}{5}$,α∈(0,$\frac{π}{2}$),tanβ=$\frac{1}{4}$,則 tan(α+β)=$\frac{16}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=ax3+bx2+cx在點x0處取得極小值-4,其導函數(shù)的圖象經(jīng)過(-1,0),(1,0),如圖所示:
(1)求x0的值;
(2)求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.${({x+\frac{1}{ax}})^5}$的各項系數(shù)和是1024,則由曲線y=x2和y=xa圍成的封閉圖形的面積為$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.下列說法
①當x>0且x≠1時,有l(wèi)nx+$\frac{1}{lnx}$≥2;
②△ABC中,a>b是sinA>sinB 成立的充要條件;
③函數(shù)y=3sin2x+$\sqrt{3}$cos2x的圖象可以由函數(shù)y=sinx的圖象向左平移$\frac{π}{6}$個單位得到;
④已知sn是等差數(shù)列{an}的前n項和,若S7>S5,則S9>S3.;
⑤函數(shù)y=f(1+x)與函數(shù)y=f(1-x)的圖象關于直線x=1對稱.
其中正確的命題的序號為②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設D,E,F(xiàn)分別為△ABC的三邊BC,CA,AB的中點,則$\overrightarrow{EB}$+$\overrightarrow{FC}$=( 。
A.?$\frac{1}{2}\overrightarrow{AD}$????B.?$\frac{1}{2}\overrightarrow{BC}$????C.?$\overrightarrow{BC}$????D.$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若集合A={-1,1,2,3},集合B={x|x∈A,$\frac{1}{x}$∉A},則集合B中元素的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.求下列函數(shù)的值域:
(1)y=$\frac{1-{x}^{2}}{1+{x}^{2}}$;                    
(2)y=$\sqrt{-2{x}^{2}+x+3}$.

查看答案和解析>>

同步練習冊答案