【題目】由于某種商品開始收稅,使其定價(jià)比原定價(jià)上漲x成(即上漲率為 ),漲價(jià)后商品賣出的個(gè)數(shù)減少bx成,稅率是新價(jià)的a成,這里a,b均為常數(shù),且a<10,用A表示過去定價(jià),B表示過去賣出的個(gè)數(shù).
(1)設(shè)售貨款扣除稅款后,剩余y元,求y關(guān)于x的函數(shù)解析式;
(2)要使y最大,求x的值.

【答案】
(1)解:定價(jià)上漲x成,即為A(1+ ),

賣出的個(gè)數(shù)為B(1﹣ ),售貨款扣除稅款后,

剩余y=AB(1+ )(1﹣ )(1﹣ ),(0<x<10)


(2)解:y=AB(1+ )(1﹣ )(1﹣

=AB(1﹣ )[﹣ +( )x+1],

令y′=0,得x= ,

x∈(0, )時(shí),y′>0;當(dāng)x∈( )時(shí),y′<0.

∴ymax= =AB(1﹣

∴使y最大有x的值為


【解析】(1)定價(jià)上漲x成,即為A(1+ ),賣出的個(gè)數(shù)為B(1﹣ ),售貨款扣除稅款后,能求出y關(guān)于x的函數(shù)解析式.(2)由已知得 ,由此利用導(dǎo)數(shù)性質(zhì)能求出使y最大的x的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)= 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對(duì)任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀.根據(jù)以往經(jīng)驗(yàn)?zāi)尺x手投擲一次命中8環(huán)以上的概率為.現(xiàn)采用計(jì)算機(jī)做模擬實(shí)驗(yàn)來估計(jì)該選手獲得優(yōu)秀的概率: 用計(jì)算機(jī)產(chǎn)生0到9之間的隨機(jī)整數(shù),用0,1表示該次投擲未在 8 環(huán)以上,用2,3,4,5,6,7,8,9表示該次投擲在 8 環(huán)以上,經(jīng)隨機(jī)模擬試驗(yàn)產(chǎn)生了如下 20 組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

031 257 393 527 556 488 730 113 537 989

據(jù)此估計(jì),該選手投擲 1 輪,可以拿到優(yōu)秀的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左焦點(diǎn)與拋物線的焦點(diǎn)重合,直線與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.

(Ⅰ)求該橢圓的方程;

(Ⅱ)設(shè)點(diǎn)坐標(biāo)為,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸長(zhǎng)為 ,過右焦點(diǎn)F的直線l與C相交于A,B兩點(diǎn).O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)P在橢圓C上,且 = + ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:方程 表示焦點(diǎn)在y軸上的橢圓,命題q:關(guān)于x的方程x2+2mx+2m+3=0無實(shí)根,
(1)若命題p為真命題,求實(shí)數(shù)m的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=ax2+bx(a<0)通過點(diǎn)(1,2),且其圖象與y=﹣x2+2x的圖象有二個(gè)交點(diǎn)(如圖所示).

(1)求y=ax2+bx與y=﹣x2+2x所圍成的面積S與a的函數(shù)關(guān)系;
(2)當(dāng)a,b為何值時(shí),S取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在區(qū)間上的最大值;

(2)若是函數(shù)圖像上不同的三點(diǎn),且,試判斷之間的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中, 分別是線段的中點(diǎn).

(1)求異面直線所成角的大小;

(2)求直線與平面所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案