已知,且.
(1)求;
(2)求.

(1);(2).

解析試題分析:
(1) 本小題首先根據(jù)同角三角函數(shù)基本關(guān)系式,結(jié)合角的范圍可求得,然后利用二倍角正切公式求
(2) 本小題主要是根據(jù)角的變換,轉(zhuǎn)化為和差角求解,首先由,得,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/82/f/153k33.png" style="vertical-align:middle;" />,所以,最后代入化簡即可.
試題解析:
(1)由,

,
于是……6分
(2)由,得
又∵,

得:

所以……13分
考點(diǎn):1.同角三角函數(shù)基本關(guān)系式;2.和差角公式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.
已知.
(Ⅰ)求的值;  (Ⅱ)若,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)函數(shù),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)求證:向量與向量不可能平行;
(2)若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的值;
(2)設(shè)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知分別是的三個(gè)內(nèi)角的對邊,.
(Ⅰ)求角的大小;
(Ⅱ)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,角A,B,C的對邊分別為a,b,c,且
(1)求角C的大;
(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,設(shè)函數(shù).
(Ⅰ)求的最小正周期與最大值;
(Ⅱ)在中,分別是角的對邊,若的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(θ)=sinθ+cosθ,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過點(diǎn)P(x,y),且0≤θ≤π.
(1)若點(diǎn)P的坐標(biāo)為,求f(θ)的值;
(2)若點(diǎn)P(x,y)為平面區(qū)域Ω:,上的一個(gè)動(dòng)點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.

查看答案和解析>>

同步練習(xí)冊答案