【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對車輛限行的態(tài)度,隨機抽查了人,將調(diào)查情況進行整理后制成下表:

年齡(歲)

頻數(shù)

贊成人數(shù)

)完成被調(diào)查人員的頻率分布直方圖.

)若從年齡在,的被調(diào)查者中各隨機選取人進行追蹤調(diào)查,求恰有人不贊成的概率.

)在在條件下,再記選中的人中不贊成車輛限行的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

【答案】(1)見解析(2)(3)見解析

【解析】試題分析:(1)根據(jù)頻率等于頻數(shù)除以總數(shù),再求頻率與組距之比得縱坐標,畫出對應頻率分布直方圖.(2)先根據(jù)2人分布分類,再對應利用組合求概率,最后根據(jù)概率加法求概率,(3)先確定隨機變量,再根據(jù)組合求對應概率,列表可得分布列,最后根據(jù)數(shù)學期望公式求期望.

試題解析:

(2)由表知年齡在內(nèi)的有人,不贊成的有人,年齡在 內(nèi)的有人,不贊成的有人,恰有人不贊成的概率為:

(3) 的所有可能取值為:,,

,

,

所以的分布列是:

所以的數(shù)學期望

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,、分別為橢圓的左、右頂點,點滿足

)求橢圓的方程;

)設直線經(jīng)過點且與交于不同的兩點,試問:在軸上是否存在點,使得直線 與直線的斜率的和為定值?若存在,請求出點的坐標及定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市一批養(yǎng)殖專業(yè)戶投資石金錢龜養(yǎng)殖業(yè),行業(yè)協(xié)會為了了解市場行情,對石金錢龜幼苖銷售價格進行調(diào)查。2017年12月隨機抽取500戶銷售石金錢龜幼苖的平均價格,得到如下不完整的頻率分布統(tǒng)計表:

(Ⅰ)完成統(tǒng)計表。

(Ⅱ)為了向石金錢龜養(yǎng)殖戶提供更好的幼苖銷售參考,協(xié)會決定2018年1月份從第1,3,5組中用分層抽樣方法取出7戶出售幼龜價格跟蹤調(diào)查,求第1,3,5組1月份接受調(diào)查的戶數(shù)。

(Ⅲ)在(Ⅱ)的前提下,協(xié)會決定從選出的7個養(yǎng)殖戶中隨機抽取3戶總結(jié)銷售經(jīng)驗.為了鼓勵養(yǎng)殖戶支持調(diào)查工作,協(xié)會決定:發(fā)給第1組被抽到的每戶幸運獎獎金210元,第3組被抽到的每戶幸運獎獎金70元,第5組被抽到的每戶幸運獎獎金140元.記發(fā)出的幸運獎總獎金額為元,求的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到定點的距離比到定直線的距離小1.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點.設線段, 的中點分別為,求證:直線恒過一個定點;

(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年9月,國務院發(fā)布了《關于深化考試招生制度改革的實施意見》.某地作為高考改革試點地區(qū),從當年秋季新入學的高一學生開始實施,高考不再分文理科.每個考生,英語、語文、數(shù)學三科為必考科目,并從物理、化學、生物、政治、歷史、地理六個科目中任選三個科目參加高考.物理、化學、生物為自然科學科目,政治、歷史、地理為社會科學科目.假設某位考生選考這六個科目的可能性相等.

(1)求他所選考的三個科目中,至少有一個自然科學科目的概率;

(2)已知該考生選考的三個科目中有一個科目屬于社會科學科目,兩個科目屬于自然科學科目.若該考生所選的社會科學科目考試的成績獲等的概率都是0.8,所選的自然科學科目考試的成績獲等的概率都是0.75,且所選考的各個科目考試的成績相互獨立.用隨機變量表示他所選的三個科目中考試成績獲等的科目數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的左、右焦點分別為離心率為,兩準線之間的距離為8,在橢圓上,且位于第一象限,過點作直線的垂線,過點作直線的垂線

(1)求橢圓的標準方程;

(2)若直線的交點在橢圓,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)設函數(shù),試討論函數(shù)零點的個數(shù);

(2)若,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)若直線與圓相交于, 兩點,求弦長;

(2)以該直角坐標系的原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,圓和圓的交點為 ,求弦所在直線的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和.

查看答案和解析>>

同步練習冊答案