已知直角坐標(biāo)平面上點(diǎn)Q(20)和圓C.動點(diǎn)M到圓的切線長與|MQ|的比值分別為12時(shí),分別求出點(diǎn)M的軌跡方程.

答案:略
解析:

如圖所示,過點(diǎn)M的直線與圓相切于點(diǎn)P,設(shè)M(x,y),連結(jié)OP,OM.由題意可知

(1),則,∴4x=5

∴點(diǎn)M的軌跡方程為

(2)

,

∴點(diǎn)M的軌跡方程為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動點(diǎn)M到圓C的切線長與|MQ|的比等于常數(shù)λ(λ>0).求動點(diǎn)M的軌跡方程,說明它表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知直角坐標(biāo)平面上點(diǎn)Q(k,0)和圓C:x2+y2=1;動點(diǎn)M到圓的切線長與Q|
的比值為2.
(1)當(dāng) k=2 時(shí),求點(diǎn)M 的軌跡方程.
(2)當(dāng) k∈R 時(shí),求點(diǎn)M 的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動點(diǎn)M到圓C的切線長與|MQ|的比等于常數(shù)2,求動點(diǎn)M的軌跡方程,說明它表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動點(diǎn)M到圓C的切線長與|MQ|的比等于
2
.求動點(diǎn)M的軌跡方程,并說明它表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動點(diǎn)M到圓C的切線長與|MQ|的比等于常數(shù)λ(λ>0),求動點(diǎn)M的軌跡方程,并說明它表示什么曲線.

查看答案和解析>>

同步練習(xí)冊答案