規(guī)定甲乙兩地通話m分鐘的電話費由f(m)=1.06×(0.5×[m]+1)(單位:元)給出,其中m>0,記[m]大于或等于m的最小整數(shù)(如:[4]=4,[3,8]=4),若從甲地到乙地通話費用為4.24元,則通話時間m的取值范圍是(  )
A、(4,5]
B、(5,6]
C、(6,7]
D、(7,8]
考點:函數(shù)模型的選擇與應用
專題:計算題,函數(shù)的性質(zhì)及應用
分析:由甲地到乙地通話m分鐘的電話費由f(x)=1.06×(0.50×[m]+1),將話費為4.24元代入函數(shù)的解析式中,易給出[m]的值,由[m]是大于或等于m的最小整數(shù),我們不難得到通話時間m的取值范圍.
解答: 解:∵4.24=1.06(0.50×[m]+1),
∴0.5[m]=3,
∴[m]=6,
∴m∈(5,6].
故選:B.
點評:這是一道新運算類的題目,其特點一般是“新”而不“難”,處理的方法一般為:根據(jù)新運算的定義,將已知中的數(shù)據(jù)代入進行運算,易得最終結果.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=2sin(x+
π
4
)的圖象按如下的順序連續(xù)進行變換:
(1)作出關于y軸的對稱圖象;
(2)將圖象上所有點的橫坐標縮小到原來的
1
2
(縱坐標不變);
(3)將圖象向左平移
π
8
個單位.
則經(jīng)過變換后得到的新圖象所對應的函數(shù)解析式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的T的值為( 。
A、12B、20C、42D、30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)市場統(tǒng)計,某商品的日銷售量X(單位:kg)的頻率分市直方圖如圖所示,則由頻率分布直方圖得到該商品日銷售量的中位數(shù)的估計值為( 。
A、35B、33.6
C、30.7D、28.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合S={y|y=3x,x∈R},T={y|y=x,x∈R},則S∩T是( 。
A、SB、T
C、{x|-1≤x<0}D、∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中錯誤的是( 。
A、如果平面α內(nèi)的任何直線都平行平面β,則α∥β
B、如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β
C、如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直線l⊥平面γ
D、如果平面α⊥平面β,α∩β=m,直線n⊥m,則n⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處取極值10,則f(0)=( 。
A、9B、16
C、9或16D、-9或16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P(a,b)是⊙O:x2+y2=r2(r>0)內(nèi)一點,直線l1是以P為中點的弦所在直線,l2:ax+by=r2,則有( 。
A、l1⊥l2且l2與⊙O相離
B、l1∥l2且l2與⊙O相離
C、l1∥l2且l2與⊙O相交
D、l1⊥l2且l2與⊙O相切

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(-3,2),
b
=(-1,0),若向量λ
a
+
b
a
-2
b
平行,則實數(shù)λ的值為( 。
A、-
1
3
B、
1
3
C、-
1
2
D、
1
6

查看答案和解析>>

同步練習冊答案