已知奇函數(shù)f(x)=
-2x+a
2x+1+b
(a,b∈R). 
(1)求a與b的值;
(2)求函數(shù)f(x)的值域.
考點:函數(shù)單調性的判斷與證明,函數(shù)奇偶性的性質
專題:函數(shù)的性質及應用
分析:(1)針對0∈D和若0∉D兩種情形進行討論,利用奇函數(shù)這個條件建立關系式,求解相應的值;
(2)直接利用指數(shù)函數(shù)的值域情形進行求解.
解答: 解:(1)設函數(shù)f(x)的定義域為D,
①若0∈D,因為函數(shù)f(x)為奇函數(shù),
∴f(0)=0,a=1,f(1)=-
1
4+b
,f(-1)=
1
2+2b
,
∵f(1)+f(-1)=0,
∴b=2,
②若0∉D,因為函數(shù)f(x)為奇函數(shù),
根據(jù)(1),b=-2,
∵f(1)+f(-1)=0,
∴a=-1,
a=1
b=2
a=-1
b=-2

(2)若a=1,b=2,
∴f(x)=
-2x+1
2x+1+2

∴2f(x)=
-2x+1
2x+1
=-1+
2
1+2x
,
∵1+2x∈(1,+∞),
2
1+2x
∈(0,2),
∴f(x)∈(-
1
2
,
1
2
).
若a=-1,b=-2,
∵f(x)=
-2x-1
2x+1-2
,2f(x)=
-2x-1
2x-1
=-1-
2
2x-1
,
∴f(x)∈(-∞,
1
2
)∪(
1
2
,+∞).
綜上,若a=1,b=2,函數(shù)f(x)的值域(-
1
2
,
1
2
).
若a=-1,b=-2,函數(shù)f(x)的值域(-∞,
1
2
)∪(
1
2
,+∞).
點評:本題綜合考查了函數(shù)的性質、函數(shù)的單調性與值域、指數(shù)函數(shù)的圖象與性質等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知箱中裝有4個白球和5個黑球,且規(guī)定:取出一個白球得2分,取出一個黑球得1分.現(xiàn)從該箱中任。o放回,且每球取到的機會均等)3個球,記隨機變量X為取出此3球所得分數(shù)之和.
(1)求X的分布列;
(2)求得分大于4的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x(x∈R)
(Ⅰ)把函數(shù)化為Asin(ωx+φ)+B的形式,并求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)單調增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

列三角形數(shù)表
       1-----------第一行
     2   2-----------第二行
   3   4    3-----------第三行
  4   7    7   4-----------第四行
5   11  14  11   5

假設第n行的第二個數(shù)為an(n≥2,n∈N*
(1)依次寫出第六行的所有數(shù)字;
(2)歸納出an+1與an的關系式并求出an的通項公式;
(3)設anbn=1,求證:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C1:x2=y,圓C2:x2+(y-4)2=1的圓心為點M.
(1)求點M到拋物線C1的準線的距離;
(2)已知點P是拋物線C1上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C1于A,B兩點,若過M,P兩點的直線l垂直于AB,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(1,m)為角α終邊上一點,tan(α+
π
4
)=-3
(Ⅰ)求tanα及m的值;
(Ⅱ)求
sin2α-1
sinα+cosα
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos2x-
3
sin2x,x∈R.
(1)求函數(shù)f(x)的單調遞減區(qū)間;
(2)設θ∈(
π
3
,
12
),且f(θ)=-
4
3
,求cos2θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,1),
b
=(-3,4),求:
a
+
b
,
a
-
b
,3
a
+4
b
的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為l,公比是正數(shù)的等比數(shù)列{bn}的前n項和為Tn,已知a1=1,b1=3,a3+b3=17,T3-S3=12,求{an},{bn}的通項公式.

查看答案和解析>>

同步練習冊答案